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1 Introduction

Benevolent experts guide decision-making by providing data and its interpretation. For instance,
researchers supply data to assess the effectiveness of policies, and scientists present evidence of the
health risks of smoking. Despite this, some people support flawed policies and deny these health
effects. This often occurs because people misinterpret data under the influence of biased narra-
tives. For instance, politicians twist data to back their policies, and cigarette companies downplay
evidence against smoking. Thus, persuasion - shaping behavior through information - depends
on both data provision and data interpretation. Ignoring the influence of biased narratives when
providing data can unintentionally steer people toward poor decisions.1

I study the strategic interaction between a benevolent sender, who provides data on the state of
the world, and a biased narrator, who interprets this data. Both compete to persuade a boundedly
rational receiver who needs to take an action. The state and the receiver’s action jointly determine
the utility for all agents. The sender chooses a statistical model and generates data from it, à la
Kamenica and Gentzkow (2011). The sender’s choice is the true data-generating model. After
observing the data and the sender’s model, the narrator proposes his model (or interpretation)
of how the data was generated. The receiver observes the data and both models but does not
know which one is the true data-generating model. Different models can lead to varying and even
conflicting interpretations of the same data. The receiver selects the model that maximizes the
likelihood (or fit) of the data given her prior belief. Finally, she takes an action based on this
selected model. The sender wants to maximize the receiver’s expected utility, while the narrator
maximizes his own. How should a benevolent sender provide data to a boundedly rational receiver
when facing a biased narrator who could misinterpret it?

To illustrate the key findings of this paper, consider a simplified example, which I will return
to throughout the paper. A voter must decide between voting for or against a strict immigration
policy. The policy’s effect is uncertain and complex. A researcher designs a statistical experiment
and gathers data to guide the voter in making an informed decision. However, a politician always
wants the voter to support the policy. He can influence the voter’s choice by providing a compet-
ing interpretation of the data. Suppose that the researcher chooses a very informative experiment.
If the data shows a high unemployment rate among immigrants, she recommends voting for the
policy. In this case, the researcher and the politician agree, and the voter supports the policy. Con-
versely, if the data shows a low unemployment rate among immigrants, the researcher strongly
advises against the policy. She asserts that immigrants have a positive impact on the economy.
However, the politician interprets the same data in a conflicting way, arguing that immigrants are
taking jobs from locals. The voter must decide between two interpretations, each advocating for
opposite choices. If initially she does not strongly oppose the policy, she finds the researcher’s rec-
ommendation unconvincing, making her more receptive to the politician. Therefore, the politician

1Baysan (2022) demonstrates that an information campaign intended to address executive power and censorship inad-
vertently led to voter polarization during a referendum in Turkey.
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can persuade the voter to support the policy, regardless of whether the data supports or opposes it.

How should the researcher strategically design her experiment to minimize misinterpretation?
Surprisingly, a partially informative experiment is optimal. Even though the researcher and the
politician are perfectly aligned when the policy is effective, the experiment deliberately withholds
full disclosure of this state. It occasionally yields low unemployment data when the policy is
effective - akin to a Type I error.2 Conversely, it consistently produces low unemployment data
when the policy is ineffective. Under this experiment, when the voter sees low unemployment
data, she trusts the researcher’s finding more because this data is now more likely to be generated.
As a result, the politician cannot sway her with any interpretation, and she votes against the policy
on seeing low unemployment data.

In general, how should the sender choose her data-generating model? She should choose a
model that balances providing precise data and minimizing misinterpretation. The value of any
data-generating model can be decomposed into two components: data provision and data misinter-
pretation. Data provision represents the receiver’s positive value, derived from acting on the more
informative (true) posterior belief rather than the prior belief. In contrast, data misinterpretation
represents the receiver’s negative value from acting based on the selected model rather than the
sender’s model, the true data-generating model. Notably, through interpretations, the narrator can
steer the receiver’s belief in any direction, even those inconsistent with the sender’s model.

The sender’s goal is to provide data that leads the receiver to have precise beliefs and take
informed actions. As the receiver selects the model based on the fit (or likelihood) of the data, the
sender should also take into account the fit of her model. A sender’s model that fits the data well
reduces the narrator’s ability to misinterpret. However, models that have a good fit have a limited
ability to alter the receiver’s beliefs. Thus, the sender faces a trade-off between how likely the data
is under her model and its ability to alter the receiver’s beliefs. Consequently, given any data, the
induced action depends on both the fit and the posterior belief induced by the sender’s model.

My main result (Theorem 1) identifies a finite set of models that contains the optimal data-
generating model. A key element is the vector of actions induced by a model, with each action
conditional on a data point. The result relies on two key observations: (i) the receiver’s expected
utility gain is linear with respect to models when the induced actions remain constant, and (ii) the
set of models where the induced actions remain constant is given by a finite union of convex sets.
Due to the linearity of the expected utility, I can restrict the search for the optimal model within
each such set to its extreme points. These sets are determined using the preferences of both the
narrator and receiver, along with the receiver’s prior. The optimal model guarantees a non-negative
value of information, ensuring that the receiver is at least as well off as she would be without any
data. This technique is applicable across various contexts, including cases where the sender is not
benevolent, the receiver correctly interprets data, and the set of allowed models is restricted.

2For example, the Centers for Disease Control and Prevention opted to only partially disclose
data on vaccination effects to mitigate the risk of misinterpretation (Mandavilli, 2022). See
https://www.nytimes.com/2022/02/20/health/covid-cdc-data.html.
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In the absence of the narrator, the sender prefers to fully disclose the state. However, this is no
longer true when the narrator is involved. In particular, providing no information is optimal when
the preferences of the narrator and the receiver are perfectly misaligned (as in a zero-sum game).
The narrator misinterprets any information that is provided, leading to suboptimal outcomes. Un-
der what circumstances is full disclosure optimal? For binary states and a narrator whose utility
only depends on the action, full disclosure is optimal if, given the state, the narrator induces an
action that does not perform worse than the optimal action under the receiver’s initial belief. This
happens when the narrator does not use a conflicting model to interpret the data. Consequently, the
receiver’s belief in the true state is higher than her initial belief, even if it is not exact.

I apply this framework to two settings. First, in Section 3.4, I elaborate on the example of the
researcher and the politician. I show that the full disclosure model can not only be suboptimal but
even backfire: it can be worse than disclosing no information. Notably, a voter initially opposed
to the policy can be persuaded to support the policy, irrespective of the data. The politician does
this by offering two different models (or interpretations), each designed for specific data. Given
supportive data, he proposes a model that aligns with the researcher’s theory. Conversely, given
opposing data, he proposes a model that raises doubts about the researcher’s theory. The voter’s
prior determines which interpretation she perceives as more plausible. I use this example to illus-
trate why the researcher should provide data in a manner that aligns with the voter’s prior. (i) If
the voter initially strongly disapproves of the policy, the researcher should fully disclose the states.
The politician cannot come up with any interpretation that convinces the voter to always support
the policy. (ii) If the voter initially slightly opposes the policy, the researcher should choose a
partially informative model. This model has the exact fit as the best model the politician can use
to convince the voter to support the policy. Choosing a more informative model would lead to a
lower fit on opposing data and allow the politician to misinterpret it. (iii) Finally, when the voter
initially supports the policy, the politician can always persuade the voter to continue supporting it,
regardless of which model the researcher chooses.

Second, in Section 4.2, I consider the example of a manager providing feedback to an employee
about his ability. The interpretation is clear: positive feedback boosts his confidence in his ability,
and negative feedback does the opposite. However, there is uncertainty about the precision of
the feedback. The employee is an optimist who prefers to believe that he has good ability. The
employee acts both as the narrator and the receiver. He interprets the feedback and forms a belief
about his ability. I consider a dynamic setting of my framework and illustrate how even a tiny
amount of uncertainty can lead to biased learning and polarization. Despite repeated feedback, the
employee incorrectly concludes that his ability is good even when it is not. He distorts his own
beliefs by perceiving positive feedback to be more informative than negative feedback (Eil and
Rao, 2011). Next, I demonstrate how two employees, an optimist and a pessimist, who start with
the same initial beliefs and receive identical feedback, can become polarized. Regardless of their
actual ability, the optimist perceives he has good ability, while the pessimist thinks the opposite. I
show that the optimal way to provide feedback to an optimist is to provide negative feedback more
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frequently than positive feedback. This counters his asymmetric interpretation and ensures that he
learns his actual ability.

Finally, I explore three extensions to my setting. First, I examine a natural setting where data
has a straightforward interpretation, such as a bad grade resulting in lower confidence in one’s
ability. While the narrator cannot alter this direction of belief change, he can alter beliefs by
varying the precision. This limits the narrator’s persuasive powers, but as seen in the employee
feedback application, this can lead to skewed perceptions and biased learning. Second, I consider
the setting where the narrator can propose multiple models (or interpretations) before observing
the data. This gives his models more credibility but also introduces additional constraints. His
models compete not only with the sender’s model but also among themselves. Surprisingly, the
timing of interpretation (ex-ante versus ex-post) does not impact the narrator’s persuasiveness.
Third, I explore a scenario where the receiver treats the models of the sender and the narrator
asymmetrically. If trust in the sender’s model decreases, the narrator’s ability to persuade increases.
This can lead to unfavorable outcomes, even resulting in a negative value of information for all
data-generating models. In such cases, the receiver would be better off if no data was provided.

Literature review

Bayesian Persuasion: My work contributes to the literature on Bayesian persuasion (or Informa-
tion design). This literature examines how a sender can influence the behavior of a rational receiver
by generating data. Crucially, I assume that the receiver is unaware of the data-generating model.
She does not know how to interpret the data. When provided with multiple models (or interpreta-
tions), she chooses the one that best fits the data given her prior belief. This is in stark contrast to
the seminal paper of Kamenica and Gentzkow (2011) and further generalizations such as Alonso
and Câmara (2016), Renault, Solan, and Vieille (2017), and Ball and Espín-Sánchez (2021). An
exception is de Clippel and Zhang (2022) which considers non-Bayesian receivers. Despite this,
the sender’s problem can still be addressed using the standard concavification technique.

My contribution lies in developing a technique to identify the optimal model for both non-
Bayesian and Bayesian receivers within a general set of allowed models. In my setting, the re-
ceiver’s action, in equilibrium, depends not only on the posterior belief but also on the likelihood of
the sender’s model. I define a preference over the space of models as the concavification technique
(Aumann, Maschler, and Stearns, 1995; Kamenica and Gentzkow, 2011) cannot be applied.3 This
technique can even be applied to settings outside my framework, where the sender is not benevo-
lent and the receiver correctly interprets data. In a related paper, Ball and Espín-Sánchez (2021)
also examine preferences over models due to a restricted set of allowed models. However, they
analyze a stylized binary model with rational receivers.

3Even when applicable, finding the concave envelope of a function can be difficult (see Tardella, 2004; Lipnowski and
Mathevet, 2017).
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The closest paper is Ichihashi and Meng (2021), which assumes that the same agent both
generates data and interprets it in a stylized binary setup. On the contrary, I consider two agents:
one who generates data and the other who interprets it. My focus is on their strategic interaction,
given their preference misalignment. Another related paper is Eliaz, Spiegler, and Thysen (2021),
where the sender, apart from providing data, also strategically provides an accurate but coarse
interpretation.

Narratives: My work contributes to the literature on narratives in economics. There has been
growing interest in understanding the role of narratives in shaping behavior (Shiller, 2017). This
literature examines how individuals use subjective models to interpret and make sense of data. My
focus is on narratives modeled as Blackwell experiments (or likelihood functions) (Schwartzstein
and Sunderam, 2021; Aina, 2021; Yang, 2023; Ispano et al., 2022; Izzo, Martin, and Callander,
2023).

Schwartzstein and Sunderam (2021) formalize narratives as Blackwell experiments, in which
the receiver selects the model that best fits the data according to her prior beliefs. Aina (2021)
builds on this framework, analyzing a setting in which the persuader commits to a menu of models
before the data is observed. Yang (2023) assumes that the receiver prefers decisive models, which
induce low regret. The literature assumes that the data-generating model is fixed and exogenous.
My contribution is to consider a strategic and endogenous data-generating model.

There have been other approaches to formalize narratives such as directed acyclical graphs
(DAGs) (Eliaz and Spiegler, 2020; Eliaz, Galperti, and Spiegler, 2022) and moral reasoning (Bén-
abou, Falk, and Tirole (2018)). Also, recent papers experimentally investigate the role of narratives
in persuasion (Barron and Fries, 2023; Kendall and Charles, 2022). In particular, Barron and Fries
(2023) provide evidence that individuals pick models with better fit.

Biased updating: My work also relates to the literature on biased updating (see Benjamin (2019)
for a survey). The primary contribution is to understand how information affects the welfare of
a receiver who uses biased updating. This framework allows explaining both prior-based and
preference-biased updating. A crucial aspect is that the receiver can use different models to update
her beliefs based on various data. This allows for reconciling behavioral biases inconsistent with
updating using a single model.

Some papers analyze the receiver’s welfare given a fixed data-generating model for biased
updating under all decision problems. Braghieri (2023) provides a characterization for when the
value of information is non-negative, while Frick, Iijima, and Ishii (2021) compare the welfare of
the receiver for different biases. In contrast, I focus on finding the optimal data-generating model
for a fixed decision problem.

Some papers in this literature investigate learning under model uncertainty. Chen (2022) as-
sumes the receiver interprets data in a self-serving manner, while Fryer Jr, Harms, and Jackson
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(2019) assume the receiver interprets data in a manner that aligns with her current beliefs. They
can explain phenomena like self-serving bias, confirmation bias, and polarization. I focus on find-
ing a data-generating model that leads to correct learning under biased updating.

Structure of the paper

Section 2 introduces the setup. Section 3 provides the main result and applies it to the setting of
information campaigns. Section 4 provides three extensions: models with clear interpretations,
timing of interpretation, and asymmetric trust. It also includes an application on employee feed-
back. Finally, I conclude in Section 5. All proofs are in the Appendix.

2 Setup

Consider a game of incomplete information between three players: the sender (S, she), the narrator
(N, he), and the receiver (R, she). The sender chooses a model to generate a signal s ∈ S about an
unknown state of the world ω ∈Ω.4 The narrator also chooses a model, but to interpret this signal.
He posits his own model of how this signal was generated. Finally, the receiver takes an action
a ∈ A based on this signal and the two models. I assume that the set of states Ω, the set of actions
A, and the set of signals S are finite, with |S| ≥ |Ω|. All players share a common prior belief over
the states p ∈ int(∆Ω).5 6 For each player i ∈ {S,N,R}, the utility function ui(ω,a) depends on
the state of the world ω ∈Ω and the receiver’s action a ∈ A.

A model m : Ω → ∆S is a stochastic map that specifies the probability m(s | ω) of observing
signal s ∈ S conditioned on state ω ∈ Ω.7 Given a signal s, a model m induces posterior belief
qm

s ∈ ∆Ω, which is derived using Bayes’ rule.8 Let M denote the set of all models. Following
Aina (2021), I define the fit of model m given signal s as the (ex-ante) likelihood:

Pm(s) = ∑
ω∈Ω

p(ω)m(s | ω). (1)

4A signal can be empirical data, evidence, or even a message.
5int(S) denotes the interior of the set S, and ∆S represents the set of all probability distributions over the set S.
6The common prior assumption is made for simplicity. The game can be generalized to heterogeneous priors.
7The term “model” is also referred to as Blackwell experiment, likelihood function, information structure, and infor-
mation policy in the literature.

8The posterior belief qm
s ∈ ∆Ω is given by:

qm
s (ω) =

p(ω)m(s | ω)

∑ω∈Ω p(ω)m(s | ω)
,

whenever Bayes’ rule is applicable.
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Let F ⊆M denote the set of feasible (or allowed) models, which is assumed to be closed and
convex. Unless stated otherwise, every model is feasible (F=M). The assumptions imply that the
sender can fully disclose the state if she wants.

Timing of the game:

1. Sender chooses the signal-generating model I : Ω → ∆S.

2. Nature draws the state ω ∼ p(·) according to the prior belief and the signal s ∼ I(· | ω)

according to the sender’s model. The signal s is publicly observed.

3. After observing the sender’s model I and signal s, the narrator selects a model ns : Ω → ∆S

to propose a competing interpretation of how the signal was generated.

4. Upon observing signal s, the receiver is presented with the sender’s model I and the narrator’s
model ns. She does not know the true signal-generating model and selects the model ms ∈
{I,ns}, which has the best fit given signal s:9

ms := argmax
m∈{I,ns}

Pm(s). (2)

5. The receiver forms her posterior belief using the selected model ms and takes action

a∗R(q
ms
s ) := argmax

a∈A
Eqms

s
[uR(ω,a)], (3)

where a∗R(q) denotes the receiver’s optimal action given belief q. It maximizes the receiver’s
expected utility given her belief over the states.10

Given signal s, the objective (or true) posterior belief and fit are derived using the sender’s
model, since it is the signal-generating model. In contrast, the receiver’s action a∗R(q

ms
s ) represents

an equilibrium outcome. The receiver acts as if the signal is generated according to the selected
model ms, which is determined by the choices of both the sender and the narrator. The expected
utility of each player i, where i ∈ {S,N,R}, is given by:

9When both models have the same fit, I assume that the receiver chooses the sender’s model.
10In case of multiple optimal actions, I break the tie by choosing the action the narrator prefers. If there are multiple

such actions, I choose an action arbitrarily.
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∑
s∈S

PI(s)EqI
s
[ui(ω,a∗R(q

ms
s ))]. (4)

I investigate the behavior of a biased narrator who chooses models (or interpretations) to max-
imize his expected utility. In contrast, the sender is benevolent (uS = uR) and chooses the signal-
generating model to maximize the receiver’s expected utility.

Discussion of Assumptions: First, I focus on the receiver. Crucially, I assume that she does not
know the signal-generating model.11 However, once she chooses a model, she updates her belief
in a rational manner using that model and the Bayes’ rule. Following Schwartzstein and Sunderam
(2021), the receiver selects the model via the maximum likelihood principle. This principle is a
popular way to select between parameters in statistics and economics.12 Given a set of models,
the receiver selects the model which has the best fit (or likelihood) given the observed signal and
her prior. Furthermore, Barron and Fries (2023) provides experimental evidence indicating that
individuals prefer models with a better fit. This assumption is also in line with the interdisciplinary
work on narratives and sense-making (Fisher, 1985; Weick, 1995; Chater and Loewenstein, 2016).
The receiver may deem some models infeasible but she cannot come up with her own model. Her
choice is confined to the models she observes.13 Also, unlike the sender and the narrator, the
receiver is non-strategic: she does not take into account their incentives, treating them as equally
credible. In Section 4.4, I relax this condition and allow the receiver to trust the sender and the
narrator asymmetrically.

Next, I assume the narrator cannot influence the signal itself or provide an additional signal. He
can only provide an interpretation of the observed signal.14 Also, he provides his model after the
signal is observed, whereas the sender chooses his model before. I show, in Section 4.3, that the
results do not depend on whether the narrator provides his interpretations before or after observing
the signal. The only caveat is that, in the ex-ante timing, the narrator provides a menu of models
instead of a single one.

Finally, I assume that the sender can only interpret using the signal-generating model.15 I do
not allow her to generate the signal using one model and to interpret the signal using a different

11Two other popular choices for dealing with model uncertainty are the fully Bayesian approach and the maxmin
approach.

12For example, the principle is used to select the prior under ambiguity (Gilboa and Schmeidler, 1993). Levy and
Razin (2021) use this principle to combine forecasts. Recently Frick, Iijima, and Ishii (2023) show that it is the most
efficient updating rule in learning under ambiguity aversion.

13This assumption is natural in many settings. Interpreting data may require expertise (finance, medicine) or leadership
(politics, see: Bullock, 2011; Izzo, Martin, and Callander, 2023).

14For instance, a stock analyst cannot change stock prices or create new price data - he can only interpret existing price
trends to guide investors.

15For instance, researchers have to preregister their experiment and cannot misinterpret how they collect data.
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one. If she could, the receiver’s expected utility would be (weakly) higher (Ichihashi and Meng,
2021). My goal is to assess and compare the influence of providing a signal and interpreting this
signal to persuade a decision-maker.

3 Main Results

In this section, I state my main results. The equilibrium of the sequential game is determined by
backward induction. First, I characterize the extent of persuasion by the narrator. I illustrate it
using a graphical illustration for the binary case. Next, I solve the sender’s problem and find the
optimal signal-generating model. I do this by defining a value function over the set of feasible
models. Finally, I apply my results to the setting of information campaigns.

3.1 Scope of persuasion by interpretations

In this subsection, I characterize the sets of feasible posterior beliefs and actions that can be induced
by the narrator given a specific sender’s model.

There are constraints on beliefs and actions that the narrator can induce. Given sender’s model
I and signal s, denote BI

s and AI
s as the sets of feasible posterior beliefs and actions that the narrator

can induce. When accounting for all signals, denote BI = (BI
s)s∈S, and AI = (AI

s)s∈S as the sets
of feasible vectors of posterior beliefs and actions. The narrator’s model is selected only if it has
a better fit on the signal than the sender’s model. The set of feasible posterior beliefs and actions
depends only on the fit of the sender’s model and the prior belief.

Lemma 1. Given the sender’s model I and signal s, the sets of feasible posterior beliefs and actions
that the narrator can induce are:

BI
s := {q ∈ (∆Ω) :

p(ω)

q(ω)
> PI(s)∀ω ∈Ω}∪{qI

s}, (5)

AI
s := {a ∈ A : ∃q ∈ BI

s such that a = a∗R(q)}. (6)

The narrator can always induce the true belief consistent with the sender’s model. For any
other belief q, the key argument is that there exists a model with maximal fit, which is given by

[max
ω∈Ω

q(ω)
p(ω) ]

−1
. The narrator cannot propose a model that induces belief q and that has a better fit

than this. Thus, the narrator can induce a belief if and only if it’s maximal fit surpasses that of the
sender’s model; otherwise, he cannot. The set of feasible beliefs is always convex.16 An action is
feasible if it corresponds to the receiver’s optimal action under some feasible belief. Proposition

16The belief qI
s either lies in the interior or is an extreme point of the set {q ∈ (∆Ω) : p(ω)

q(ω) > PI(s)∀ω ∈Ω}.
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1 of Schwartzstein and Sunderam (2021) can be applied to my setting to characterize the feasible
posterior beliefs.

The sender’s model acts as a constraint to the narrator’s ability to persuade. The better the
sender’s model fits the signal, the less flexibility the narrator has in shifting beliefs. The narrator
can only persuade the receiver to have beliefs not too far from her prior. Crucially, using inter-
pretations, the narrator can manipulate the receiver’s belief in any direction, even those that are
inconsistent with the signal-generating model. By proposing distinct models for different signals,
he can consistently shift beliefs in the same direction for those signals. This is impossible if the
receiver uses a single model, even if it is incorrect, to interpret all signals.

3.2 Binary Example: Graphical illustration

In this subsection, I graphically illustrate the narrator’s extent of persuasion. I use the example of
a researcher (sender), a politician (narrator), and a voter (receiver).

Consider two states: Ω = {G,B}, where G and B are the states where the policy is good and
bad, respectively. The researcher provides evidence S = {g,b}, where g indicates evidence that
supports the policy, and b is evidence that opposes it. The voter chooses from A = {a−,a+}, where
a− is to vote against the policy and a+ is to vote for it. The utility function of the politician and
the voter are given by the following matrix:

Actions
a− a+

States
G (0,1) (1,2)
B (0,1) (1,0)

Table 1: Matrix of utility functions for the politician and the voter, respectively.

The voter only votes for the policy if she believes it’s likely to be good, that is, q(G) ≥ 1
2 .

Otherwise, she prefers to vote against. The politician, regardless of the state, always wants her to
vote for the policy. The researcher and the politician influence the voter’s choice of action. This
action depends on her belief over the states. So, focusing on the vector of posteriors rather than the
model that induces it provides useful insights.

First, I focus on the beliefs the researcher can induce in the absence of the politician’s influ-
ence. Given the states are binary, let the probability of state G identify the beliefs in the example.
The graph’s axes represent the posterior belief on state G given evidence b and g (see Fig. 1). Each
point in this graph is a vector of posterior beliefs. I represent the vector of priors p = P(G) = 0.4
as the vector of posterior beliefs, where each posterior equals the prior (black point). A vector of
posteriors (qb(G),qg(G)) is Bayes plausible if and only if either: (i) qb(G) ≥ p(G) ≥ qg(G) or
(ii) qb(G) ≤ p(G) ≤ qg(G). This condition ensures that there is a model such that the expected
posterior equals the prior. The set of all models M cover all the vectors of posterior beliefs that are
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Figure 1: The set of all Bayes-plausible vector of beliefs.

Bayes plausible (green area). The researcher can induce any such vector of posteriors. This con-
dition prevents the voter from updating beliefs in the same direction in response to both opposing
and supportive evidence. In binary scenarios, each vector of posterior beliefs is uniquely induced
by a model.17

Suppose that the researcher chooses the model I (blue point): supportive evidence is likely
generated under the good state, and vice versa for opposing evidence. Formally, I(g | G) = 7

8 and
I(b | B) = 3

4 . Consider the purple line that passes through the model I (blue point) and the prior p
(black point). All models on this line have the exact fit as model I on both evidences.18 The steeper
this line, the better fit the model has on evidence b ; conversely, the flatter this line, the better fit
the model has on evidence g. The set of all models M can be divided into three subsets based on
this line (see Fig. 2): (i) models that have the same fit on both evidences (purple line), (ii) models
with a better fit on evidence b (blue dotted area) and (ii) models with a better fit on evidence g (red
area).

Given researcher’s model I, what can the politician do to persuade the voter? The politician
chooses his model based on the observed evidence. Given evidence b, the politician can choose
any model in the blue dotted area and the voter will select it over the researcher’s model I. Given
evidence b, the politician can induce any belief on the blue line on the x-axis, which is the pro-
jection of the blue dotted area. This also includes beliefs higher than the prior, contrary to the
intention of the researcher’s model. Conversely, given evidence g, the politician can choose any
model in the red area and the voter will select it over the researcher’s model I. Given evidence g,
the politician can induce any belief on the red line on the y-axis, which is the projection of the red

17The only exceptions are models that provide no information; they induce, for at least one signal, a posterior belief
identical to the prior belief.

18For the binary case, any model m that induces the vector of beliefs (qm
b (G),qm

g (G)) ∈M has the same fit as model I
given evidence b (and g) if it satisfies the following condition:

PI(b)qm
b (G)+(1−PI(b))qm

g (G) = p.

This condition represents the line passing through the points I and p in Fig. 2. The vector of priors always satisfies
this condition.
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Figure 2: The posterior beliefs and actions that the politician can induce.

area. The set of beliefs satisfying equation (5) in Lemma 1 precisely corresponds to the blue and
red lines for evidence b and g, respectively

From an ex-ante perspective, the politician can induce any vector of posterior beliefs within the
yellow area, which is defined as the Cartesian product of the red and blue lines. This set depends
only on the fit of the researcher’s model. Since all models on the purple line have the same fit, they
yield identical feasible vectors of posteriors within the yellow area. Crucially, the politician can
also induce vectors of posterior beliefs that are not Bayes plausible, i.e. outside the green area in
Fig. 1. Indeed, under model I, the politician can persuade the voter to take any action, regardless
of the evidence provided. For example, by proposing models nb and ng given evidence b and g, he
can induce the vector of beliefs nbg (depicted as the orange point in Fig. 2). The voter becomes
more convinced that the policy is good compared to her prior belief, regardless of whether the
evidence is supportive or opposing, and she votes for the policy with certainty. In the next section,
I demonstrate how the researcher should generate evidence to prevent misinterpretation by the
politician.

3.3 Optimal signal-generating model

Now, I turn to the sender’s problem. I identify a finite set of models that contain the optimal
signal-generating model by defining a value function over the set of feasible models.

Let aI = (aI
s)s∈S ∈ A|S| denote the vector of induced actions when sender chooses the model I.

If the sender chooses model I and signal s is generated, the narrator selects an action from the set
of feasible actions AI

s to maximize his expected utility.19 I have

aI
s := argmax

a∈AI
s

EqI
s
[uN(ω,a)]. (7)

19If the narrator has multiple optimal actions, I break the tie by choosing the receiver’s preferred action. As a result,
the action aI

s is unique.
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The induced action aI
s is the narrator’s best response to the sender’s model I and signal s. Define

the value function V : F→ R over the set of feasible models as:

V (I) := ∑
s∈S

PI(s)EqI
s
[uR(ω,aI

s)]−Ep[uR(ω,a∗R(p))]. (8)

The value function is given by the receiver’s expected utility gain given the sender’s model I.
It determines the sender’s preference over the feasible models taking into account the narrator’s
ability to misinterpret and his preferences. The goal of the sender is to find the optimal signal-
generating model I∗ that maximizes the value function among the set of feasible models. The
value of any model can be decomposed into two components: signal provision and signal misin-
terpretation.

V (I) = ∑
s∈S

PI(s)
(
EqI

s
[uR(ω,a∗R(q

I
s)−uR(ω,a∗R(p))]︸                                      ︷︷                                      ︸

signal provision ≥ 0

+EqI
s
[uR(ω,aI

s)−uR(ω,a∗R(q
I
s))]︸                                  ︷︷                                  ︸

signal misinterpretation ≤ 0

)
. (9)

The signal provision component represents the receiver’s value from using the true posterior
belief over the prior belief. It is the focal point in the Bayesian persuasion literature and is always
non-negative. The signal misinterpretation component reflects the receiver’s value when she acts
based on the chosen model rather than the sender’s model. This value is always non-positive. It
becomes strictly negative when the receiver deviates from the action recommended by the sender’s
model.

When choosing a model, the sender has to take into account the trade-off between providing
precise signals and minimizing misinterpretation. To simplify the search for the optimal signal-
generating model, I partition the set of all feasible models into a disjoint union of convex subsets.
The vector of induced actions remains fixed within each such set. Let Ca ⊆ F denote the set of
sender’s models where the vector of induced actions is a ∈ A|S|:

Ca := {I ∈ F : aI = a}. (10)

The collection C= {Ca}a∈A|S| , over all vectors of actions, is a finite cover of the set of feasible
models F.

Lemma 2. The set Ca is a finite disjoint union of convex sets for any vector of actions a ∈ A|S|.

This follows as any set Ca can be written as a finite disjoint union of the intersection of finitely
many half spaces. Let C and Ext(C) denote the closure and the set of extreme points for any
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convex set C.20 Due to the linearity of the value function when the vector of induced actions
remains fixed, I can restrict the search of the optimal model within each set Ca to its extreme
points.21 This technique simplifies the sender’s optimization into a finite linear program.

Theorem 1. The optimal signal-generating model

I∗ := argmax
I∈F

V (I) (11)

corresponds to an extreme point of the set Ca for some a ∈ A|S|. Furthermore, Ext(Ca) is finite for
all a ∈ A|S|.

By virtue of the theorem, one can pinpoint finite candidate models in the search for the optimal
one. This vastly simplifies the sender’s optimization problem because the space of all models is
very large (see green area in Fig. 1 for the binary case). The set of candidate models is obtained by
taking the union of the set of extreme points Ext(Ca) over all possible vector of actions a ∈ A|S|.
Each set Ca is determined by the preferences of the narrator and the receiver, in addition to the
receiver’s prior. This technique for identifying the optimal signal generating model is applicable in
various settings. For example, it can be used even when the sender is not benevolent, when there
are restrictions on the set of allowed models, or when the receiver always correctly interprets the
signal.

Consider any candidate model that does not fully disclose the states. This model either (i)
results in a posterior belief where the narrator or the receiver is indifferent between multiple actions
and/or (ii) matches the fit of another model, where the narrator can induce a different vector of
actions. If such a candidate model is optimal, opting for a more informative model results in more
misinterpretation. It changes the induced vector of actions, making it worse for the receiver. If not
for this, the sender would want to give more information, and this model would not be the best
choice.

A model that is always a candidate model is the no disclosure model INDs , defined for any s∈ S.
This model unambiguously sends the signal s, that is, INDs(s | ω) = 1 for all ω ∈ Ω. When the
preferences of the narrator and receiver are perfectly misaligned, akin to a zero-sum game, the no
disclosure model is optimal. Furthermore, in this setting, any optimal model uniquely induces the
receiver’s optimal action under her prior.

Proposition 1. If uN =−uR, then for any s ∈ S, the no disclosure model INDs is optimal. Addition-
ally, any optimal model induces the unique action a∗R(p).

As the no disclosure model INDs sends the signal s with probability 1, it has the maximal
fit among all models for signal s. It results in the posterior being identical to the prior, that is,

20The set Ca can be an open set as I break the tie between models with equal fit in favor of the receiver.
21Lipnowski and Mathevet (2017) use a similar property to identify candidate beliefs rather than candidate models.
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qINDs
s = p. This model discloses no information, leading to no room for misinterpretation, that

is, V (INDs) = 0. This is optimal when the agents have perfectly misaligned preferences as the
narrator misinterprets any information provided. Importantly, this model guarantees that the value
of information under the optimal model is non-negative, that is, V (I∗)≥ 0.

The full disclosure model IFD is always a candidate model. If there was no narrator, it would
be the benevolent sender’s optimal choice. The more information the receiver has, the better action
she can take. As seen in the example before, this is no longer true in the presence of a biased
narrator. However, is it ever optimal for the sender to fully disclose the states? If so, then when?
A narrator has state-independent utility uN(a) if his utility depends only on the receiver’s action
and not the state.22 For example, politicians want to get elected, investors want to sell high-fee
products, lobbyists want favorable policies. As |S| ≥ |Ω|, I can assume that the set of signals
contains a copy of the set of states, that is, Ω ⊆ S. Formally, the model IFD fully discloses (or
reveals) the states, that is, IFD(ω | ω) = 1 for all ω ∈Ω.

Proposition 2. For binary states and a narrator with state-independent utility, the full disclosure
model IFD is optimal if uR(ω,aIFD

ω )≥ uR(ω,a∗R(p)) for all ω ∈Ω.

The proposition states that full disclosure is optimal if the narrator either cannot or does not
want to induce an action worse than the optimal action at the prior belief. The narrator does not
use a conflicting model to interpret any signal. This ensures that the receiver’s posterior on the
disclosed state is higher than the prior. However, the subsequent corollary demonstrates that when
the narrator has state-independent utility, the full disclosure model cannot be universally optimal
for all prior beliefs. For the next result, to avoid generic situations, I assume that there are at least
two actions, which are uniquely optimal for the receiver under some beliefs and that the narrator is
not indifferent between them.

Corollary 2. Given any narrator with state-independent utility, there exists a prior belief p ∈
int(∆Ω) such that the full disclosure model IFD is not optimal.

To see why, suppose that the receiver has a prior belief, where the narrator’s most preferred
action is not optimal but it is very close to being optimal. If the sender fully discloses the state, the
narrator can induce his most preferred action, with probability 1, due to its proximity to the prior
belief. However, since this action is not the receiver’s optimal choice given her prior belief, it is
better for the sender to provide no information.

3.4 Application: Information campaigns

Experts use information campaigns to influence health behavior, policy attitudes, and voter turnout
(Haaland, Roth, and Wohlfart, 2023). However, there are cases where a campaign not only fails

22This is an often studied case in the literature, see Lipnowski and Ravid (2020).
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to provide information but may also increase misperceptions.23 In particular, I demonstrate that
information can backfire; specifically, the receiver might shift her belief in the opposite direction to
that intended. The backfire effect has been observed empirically in information campaigns (Nyhan
and Reifler, 2010; Hart and Nisbet, 2012; Baekgaard et al., 2019; Baysan, 2022). In particular,
Baekgaard et al. (2019) provide experimental evidence that (i) the farther the prior belief is from
the target belief, the greater the chance of misinterpretation and that (ii) more information can
paradoxically lead to a higher chance of misinterpretation.

For the example of the researcher and the politician, I characterize the optimal signal-generating
model. First, the set of all models can be partitioned based on the vector of induced actions (Fig. 3).
Using Theorem 1, I limit my search to the finite set of extreme points for each set Ca (black nodes).
My focus is exclusively on the models in the top-left quadrant, as the models in the bottom-right
quadrant are obtained simply by swapping the labels g and b. In total, there are only six candidate
models, including the full disclosure and no disclosure models.

In the absence of a politician, the researcher would choose the full disclosure model, namely
IFD(g | G) = IFD(b | B) = 1. However, when evidence can be misinterpreted, it is suboptimal to
fully disclose. Given opposing evidence b, the politician can choose the model nb (blue point)
where nb(b | G) = 1 and nb(b | B) = 2

3 . This model has better fit than the full disclosure model
for opposing evidence: PIFD(b) =

3
5 < 4

5 = Pnb(b). This can also be seen graphically as the purple
line passing through the points nb and p is steeper than the dashed line passing through the points
IFD and p. Given evidence b, the politician is able to persuade the voter to support the policy, as
the model nb induces a posterior belief equal to 0.5. In fact, the full disclosure model performs
worse than the no disclosure model. Initially, the voter prefers to vote against the policy. However,
under the full disclosure model, the politician can convince her to vote for the policy with certainty.
Therefore, it is better for the researcher to provide no information.

qb(G)

qg(G)

nb

p

IFD I∗
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Figure 3: Partition of the set of models based on the vector of induced actions.

I have shown that fully disclosing the states is not optimal. How should the researcher pro-
vide evidence? The researcher chooses a partially informative model that better fits the opposing
23It is important to distinguish between misinformation (false information) and misperceptions (false beliefs). My

focus is on the cases where correct information can lead to false beliefs due to misinterpretation.
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evidence. The (unique) optimal signal-generating model I∗ (black star) is given by:

I∗(b | B) = 1, I∗(b | G) =
1
2
,

I∗(g | B) = 0, I∗(g | G) =
1
2
.

The model nb has the maximal fit among all models that induce belief qb(G) = 0.5. The fit
of the optimal model I∗ and the model nb exactly match: Pnb(b) =

4
5 = PI∗(b). This can also be

inferred graphically, as both models lie on the purple line passing through the prior belief. The
politician cannot propose a model with better fit and that persuades the voter to support the policy.
Surprisingly, even though the politician and the researcher are perfectly aligned when the policy is
good, the optimal signal-generating model does not disclose state G. Instead, it pools state G with
state B where their preferences are misaligned, to make the opposing evidence more plausible.
This pooling is to prevent the voter from misinterpreting the opposing evidence.

The optimal model I∗ is unique. If the researcher chose a more informative model (represented
by the line segment joining I∗ and IFD), the politician can misinterpret the opposing evidence. On
the other hand, if she chose a less informative model, at worst, it lowers the likelihood of correctly
matching the state and the action.

The prior belief of the voter plays an important role in determining the partition and optimal
model (see Fig. 4). The optimal model is of three types based on the prior : (a) full disclosure for
low prior, (b) partially informative for mid prior, and (c) no disclosure for high prior.
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Figure 4: The partition and the optimal model for different prior beliefs.

For low prior, (p ≤ 1
3), the full disclosure model IFD is optimal. Given opposing evidence b,

any model of the politician that better fits the evidence cannot convince her to vote for the policy.
The threshold p = 1

3 is precisely the prior for which the full disclosure model IFD lies on the line
passing through the prior p and the model nb (purple line in Fig. 4a).

For a high prior (p ≥ 0.5), any signal-generating model including the no disclosure model is
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optimal. Given evidence e ∈ {g,b}, the politician can always choose the no disclosure model INDe

that sends evidence e with probability 1. This model has the maximal fit on evidence e among all
models, and it keeps the voter’s posterior fixed at the prior. Essentially, the politician can always
confirm the voter’s prior belief. As p ≥ 0.5, the voter’s optimal action under the prior is to vote for
the policy. Thus, the politician can always persuade the voter to support the policy, irrespective of
the researcher’s model (Fig. 4b).

4 Extensions

In this section, I introduce three extensions to the base model: a restricted set of feasible models,
ex-ante interpretation and asymmetric trust. I also provide an application on employee feedback.

4.1 Models with clear interpretation

In this extension, I explore a scenario where signals have a clear interpretation. For example, a bad
grade can only make the agent think that their ability is worse, not better. I assume that the set of
signals is a copy of the set of states S=Ω, where each signal ω is likely generated under the state
ω , meaning that I(ω | ω)≥ I(ω | ω̃) for all states ω̃ , ω . This restricts the set of feasible models
and prevents the narrator from proposing conflicting models that move the receiver’s belief in a
direction opposite to what was intended. The set of models with a clear interpretation MC ⊂M is
given by:

MC := {I : Ω → ∆S : I(ω | ω)≥ I(ω | ω̃)∀ω̃ , ω}.

This imposes a constraint on the set of receiver’s belief that can be induced. The space of
beliefs can be partitioned into a collection of convex subsets {Pω}ω∈Ω (see Fig. 5) such that given
signal ω , the posterior belief must belong to the convex set Pω .

Pω := {q ∈ ∆Ω :
q(ω)

p(ω)
≥ q(ω̃)

p(ω̃)
for all ω̃ ∈Ω}. (12)

The signals have a clear interpretation. On seeing the signal ω , the change in the likelihood
of the state ω is greater than any other state ω̃ , ω . Ichihashi and Meng (2021) also impose this
restriction on the set of feasible models. The set of feasible beliefs and actions depends solely on
the prior belief and the fit of the sender’s model.
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Figure 5: (a) The partition of the belief space and (b) the set of feasible posterior beliefs given
sender’s model I.

Proposition 3. If F =MC, the sets of feasible posterior beliefs and actions that the narrator can
induce given sender’s model I ∈MC and the signal ω are given by

BI
ω := {q ∈ Pω :

p(ω)

q(ω)
> PI(ω)}∪{qI

ω}, (13)

AI
ω := {a ∈ A : ∃q ∈ BI

ω such that a = a∗R(q)}. (14)

The narrator can alter the signal’s precision but not the direction of interpretation. He can
induce beliefs up to a certain precision (see Fig. 5). This ensures that the posterior has a higher
probability on the true state than the prior. The key distinction from Lemma 1 is that the condition
in equation (13) applies exclusively to the most likely state ω , rather than to all states. One can
still use Theorem 1 to find the optimal signal-generating model. The only caveat is that the set
Ca will differ, depending on the set of feasible models. Nonetheless, the fundamental property of
convexity remains applicable, as the set of feasible models is a closed and convex set. This permits
the partitioning of the set of feasible models into finite convex sets and allows for a search within
these candidate models to determine the optimal one.

In the example of the researcher and the politician, if the players are constrained to models
with clear interpretation, the full disclosure model would be optimal for all priors. Although one
might expect that in the context of clear interpretations, the narrator’s role would be insignificant,
it can still lead to adverse consequences. I illustrate this in the subsequent application.

4.2 Application: Employee Feedback

I consider an application where a manager provides feedback to her optimistic employee. The
employee wants to believe that his ability is good. He interprets the direction of feedback correctly
but not the precision. The focus will be on whether the employee learns his true ability. First, I
show that even a tiny amount of uncertainty in precision can lead to biased learning. Furthermore,
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I show that two employees, an optimist and a pessimist, who start with the same initial beliefs and
observe the same (infinite) sequence of feedback can be polarized.24 Finally, I show that giving
bad feedback more frequently than good can ensure that the optimistic employee always learns his
true ability.

Consider the states Ω = {G,B}, where G and B refer to the state when the employee’s abil-
ity is good and bad, respectively. The manager provides feedback about the ability using signals
S = {g,b}, where g refers to good news and b refers to bad news. The signals have a clear inter-
pretation: good news is more likely generated when his ability is good, and vice versa. Suppose
that the manager provides feedback according to model I (black point in Fig. 6a):

I(g | G) = I(b | B) = κ, (15)

where κ > 0.5 represents the precision of the news. She symmetrically provides good and bad
news.

The employee correctly interprets the direction of the news, but he is uncertain about the preci-
sion. The set of feasible models F =Mε ⊂MC have precision in the range of [κ −ε,κ +ε] (green
area in Fig. 6a):

Mε := {m : Ω → ∆S : m(g | G) ∈ [κ − ε,κ + ε],m(b | B) ∈ [κ − ε,κ + ε]}, (16)

where κ − ε ≥ 0.5 and κ + ε ≤ 1.

The level of uncertainty is given by ε . The lower the value ε , the more certain the employee is
about the precision of the news.

The employee is an optimist (O) who overestimates the likelihood of experiencing positive
outcomes and underestimates the likelihood of experiencing negative events (Hey, 1984). Most
people tend to be optimistic (Sharot, 2011).

Directed (or motivated) reasoning posits that people interpret news (often unconsciously) in
the direction they find attractive. But even an optimist cannot interpret the news in any direction he
wants. He faces a trade-off between accuracy and directional motives. In my setting, the accuracy
goal corresponds to the model fit: how well the news fits the model. The employee can adopt a
biased interpretation only if it has a better fit than the manager’s model.

The employee here acts as both the narrator and the receiver. I consider a dual-self framework,
where the unconscious mind (directional motives) is the narrator and the conscious mind (accuracy

24There’s a growing theoretical literature that offers explanations, both Bayesian and non-Bayesian, on why and when
polarization occurs. (Benoit and Dubra, 2016; Dixit and Weibull, 2007; Baliga, Hanany, and Klibanoff, 2013;
Acemoglu, Chernozhukov, and Yildiz, 2016; Fryer Jr, Harms, and Jackson, 2019; Chen, 2022).
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Figure 6: Employee Feedback: Optimist (O) and Pessimist (P)

motives) is the receiver.25 The narrator wants to interpret the news in the direction of his biased
state G.

On receiving good news, the employee interprets using the model ng:

ng(g | G) = κ + ε, ng(b | B) = κ + ε. (17)

This model has a (weakly) better fit than the manager’s model for good news: Png(g)≥PI(g).26

The employee interprets the news to be very informative and overreacts to it (see Fig. 6b).

On receiving the bad news, the employee interprets using the model nb:

nb(g | G) = κ − ε, nb(b | B) = κ − ε. (18)

The model has a (weakly) better fit than the manager’s model for bad news: Pnb(b) ≥ PI(b).
The employee interprets the news to not be very informative and underreacts to it (see Fig. 6b).

Thus, the employee reacts asymmetrically to good and bad news (Eil and Rao, 2011; Möbius
et al., 2022). The model provides a possible explanation for the good news-bad news effect, where
the employee does not stray away from Bayesian updating, but instead uses different models to
interpret different news.

What happens when the employee receives repeated feedback? Does he learn his true ability?

25Formally, one can assume the narrator (unconscious mind) has a belief based utility which is an increasing function
in his belief q(G).

26A slight perturbation of ng ensures a strictly better fit than I.
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I assume that in each round, he interprets each piece of news individually rather than considering
the entire sequence. The past news sequence only influences his prior belief for that specific round.
If the amount of uncertainty ε is sufficiently large, the optimistic employee learns his biased state
G, almost surely.

Lemma 3. For any prior belief p ∈ (0,1), the optimist (asymptotically) learns the biased state G
almost surely if

[ κ − ε
1−κ + ε

]κ
<
[ κ + ε

1−κ − ε
](1−κ)

. (19)

This condition holds for example, when κ = 0.7 and ε = 0.1. Thus, even if the employee’s
ability is bad, despite repeated feedback, he ends up confident that his ability is good. Camerer
and Lovallo (1999) shows that misinterpretation can lead to overconfidence when starting new
businesses, often resulting in failure. Weeks et al. (1998) show that due to optimism bias, patients
choose wrong treatments despite an accurate prognosis. Massey, Simmons, and Armor (2011)
show that people exhibit optimism bias and misinterpret accurate signals despite repeated feed-
back.

Next, I consider two employees, an optimist (O) and a pessimist (P). Contrary to an optimist, a
pessimist underestimates the likelihood of an favorable outcome and overestimates the likelihood
of unfavorable outcomes (Hey, 1984).27 One can also imagine two news outlets that twist the
same news story to support their preferred political position. I show that the two employees despite
having the same prior and observing the same (infinite) sequence of news can be polarized. In the
long run, both employees become confident in their biased states and disagree with each other.

On receiving good news, the optimist interprets the signal to be very informative and overreacts
to it, while the pessimist interprets it to be very uninformative and underreacts to it. And vice versa
when receiving bad news (see Fig. 6b).

When presented with a balanced set of good news and bad news, the employees’ beliefs are
polarized, that is, qO

gb(G) > p > qP
gb(G) where qO

gb and qP
gb refer to posterior belief of the optimist

and pessimist after observing g and b, respectively.28 The employees shift their beliefs in opposite
directions after observing the same balanced set of good and bad news (Taber and Lodge, 2006;
Bolsen, Druckman, and Cook, 2014). In the long run, under sufficient uncertainty, each employee
always learns his biased state.

Corollary 3. For any common prior belief p ∈ (0,1), an optimist and pessimist learn their biased
state G and B respectively almost surely if equation (19) holds.

Given that an employee distorts the news, how should a manager provide feedback to her
27Strunk, Lopez, and DeRubeis (2006) show that individuals suffering from depression tend to exhibit pessimism bias.
28The order of news does not affect the posterior belief: qi

gb = qi
bg for i = O,P.
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optimistic (or pessimistic) employee? The manager should also provide news in an asymmetrical
manner to counter the asymmetric interpretation. This ensures that the employee’s belief is close
to being accurate.

Proposition 4. For any prior belief p ∈ (0,1), the optimist (asymptotically) learns the correct state
almost surely under the optimal model I∗ ∈Mε , where the model I∗ is given by:

I∗(g | G) = κ − ε, I∗(b | B) = κ + ε. (20)

The optimal model I∗ provides good and bad news in an asymmetric way to counter the asym-
metric interpretation of signals. When providing feedback to an optimistic employee, the manager
should provide bad news more often than good news.29 The optimal way to provide feedback
depends on the direction of bias the employee exhibits and the degree of uncertainty. This has
implications on how to provide feedback or design test results. For example, medical tests can
vary in their ability to rule in or rule out disease, and human resource departments can tailor their
feedback style accordingly.

4.3 Ex-ante interpretation of signals

In this extension, I consider a setting where the narrator provides his models ex-ante, before the
signal has been observed, instead of ex-post, after the signal has been observed. He still chooses
his models after observing the sender’s choice. Schwartzstein and Sunderam (2021) focuses on
ex-post interpretation, while Aina (2021) analyzes ex-ante interpretation. The narrator can provide
multiple models instead of a single one in this setting. Communicating models before observing the
signal enhances credibility. However, providing a menu of models imposes additional constraints
for the narrator, as each model not only competes with the sender’s model but also with the other
models in the menu. Surprisingly, the narrator can attain the same vector of posterior beliefs and
actions with ex-ante or ex-post provision of models. Thus, the results do not depend on whether
the narrator communicates the models before or after the signals have been observed.

Let the menu of models the narrator provides be denoted by N =
⋃

s∈S ns.30 The narrator does
not need to provide more than |S| models. This is because the receiver selects one model for each
signal. Consequently, the narrator tailors model ns to correspond precisely with signal s.

Upon observing signal s and the narrator’s menu of models N and the sender’s model I, the
receiver selects the model ms that has the best fit given signal s:

29Similarly, when providing feedback to a pessimist employee, a manager should provide good news more often than
bad news.

30The models, which can be conflicting, need not be provided by the same agent but by a collusion of agents to
maintain credibility. For example, different members of a political party or different news shows on the same
network (Bursztyn et al., 2020)
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ms := argmax
m∈N

⋃
{I}

∑
ω∈Ω

p(ω)m(s | ω). (21)

Surprisingly, the timing of model communication, whether ex-ante or ex-post, does not impact
the narrator’s ability to influence beliefs and actions.

Lemma 4 (ex-ante interpretation). Given the sender’s model I and signal s, the set of feasible
posterior beliefs and actions that the narrator can induce are:

BI
s := {q ∈ (∆Ω) :

p(ω)

q(ω)
> PI(s) ∀ω ∈Ω}∪{qI

s}, (22)

AI
s := {a ∈ A : ∃q ∈ BI

s such that a = a∗R(q)}. (23)

Each model ns is specifically tailored for signal s resulting in the desired posterior belief. Also,
each model ns has a worse fit on signal t , s than model nt . In fact, the narrator can use the model
with maximal fit for belief qs, like in Lemma 1, but needs to adjust the fit of signals t , s. This
adjustment guarantees that each model has the best fit for its specific signal. Theorem 2 of Aina
(2021) can be applied to my setting to characterize the set of feasible posterior beliefs.

4.4 Asymmetric Trust

In this extension, I consider a setting where the receiver evaluates the models of the sender and
narrator asymmetrically. This can happen due to differences in trust or credibility. For example,
in the case of the researcher and the politician, a voter who trusts the researcher’s expertise might
need stronger evidence to accept the politician’s model, while a skeptic may require less evidence.

I define the trust coefficient, denoted as η ∈ [0,∞), as the ratio representing the level of trust
between the sender and the narrator. When the likelihood ratio comparing the narrator’s model to
the sender’s model surpasses the trust coefficient η , the narrator’s model is selected:

Pn(s)
PI(s)

≥ η . (24)

The higher the value of η , the more likely the signal has to be under the narrator’s model
to be selected. When η equals zero, the receiver always acts according to the narrator’s model.
While when η approaches infinity, she acts rationally and always selects the sender’s model. Let’s
analyze the effect of η on the example of the researcher and the politician.

If η > 1, then the voter trusts the researcher more than the politician. She only chooses the
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politician’s model when it significantly better explains the signal than the researcher’s model.
Specifically, when η = 2, the full disclosure model IFD is optimal (see Fig. 7a). On seeing op-
posing evidence, the politician’s influence to convince the voter is diminished. He cannot convince
her to vote for the policy. The blue line on the x-axis represents the set of feasible beliefs he can
induce given opposing evidence. In this case, the set of beliefs that the narrator can induce is not a
convex set.
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Figure 7: The set of feasible beliefs that the narrator can induce for prior belief p = 0.4.

If η < 1, then the voter trusts the researcher less than the politician. She chooses the politician’s
model, even if it has a lower likelihood to generate the signal than the researcher’s model. Suppose
η = 0.5 and the researcher chooses the no disclosure model INDb that presents opposing evidence
with certainty. This model has the maximal fit among all models. However, the politician can
convince the voter to support the policy using the model nb (orange point in Fig. 7b). The blue
line on the x-axis represents the set of feasible beliefs that he can induce given opposing evidence.
In this scenario, unlike the baseline setting, the value of information for any model can be strictly
negative. The voter would be better off without any evidence.

Given the sender model I and η , let BI
s(η) and AI

s(η) denote the set of feasible posterior beliefs
and actions conditional on signal s and trust coefficient η .

Proposition 5. If η1 > η2, then BI
s(η1)⊆ BI

s(η2) and AI
s(η1)⊆ AI

s(η2) for all s ∈ S and I ∈ F.

The proposition states that the narrator has a higher ability to persuade when the parameter η
is lower. The higher the trust the receiver places on the narrator, the greater the persuasive ability
he has. Two receivers with the same prior belief but different trust coefficients can interpret the
same signal using different models.

5 Conclusion

This paper analyzes the competing role of data provision and data interpretation in persuading an
agent. If the agent does not know how data is generated, she can be persuaded to adopt biased
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interpretations over the correct one. In particular, full disclosure can backfire and lead to outcomes
that are worse than providing no information. Hence, it is imperative to consider the narratives
an agent might be exposed to when providing information. A novel technique is developed to
find the optimal data-generating model. This model balances between providing precise data and
minimizing misinterpretation. The optimal approach is to provide data in a manner that aligns
with the agent’s initial beliefs, effectively mitigating the risk of misinterpretation. This approach
ensures that the agent always, on average, derives positive value from the data.

From a theoretical standpoint, this paper presents a novel method to find the optimal data-
generating model to persuade both Bayesian and non-Bayesian agents, even in situations where
the set of allowed models is restricted. The findings hold relevance in crafting information cam-
paigns that influence public welfare, encompassing health, policy, and voting decisions, while also
facilitating tailored feedback for agents who process information in a biased manner.

In terms of future research directions, there are several avenues to explore. One direction
could involve examining competition between agents who can both provide and interpret informa-
tion. Another interesting area to investigate is the impact of persuasion on a population of agents
with heterogeneous prior beliefs. Additionally, alternative model selection rules, such as a convex
combination of proposed models, could be considered, with coefficients reflecting the fitness ratio
among the models.
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A Appendix: Proofs

Lemma 1. Given the sender’s model I and signal s, the sets of feasible posterior beliefs and actions
that the narrator can induce are:

BI
s := {q ∈ (∆Ω) :

p(ω)

q(ω)
> PI(s)∀ω ∈Ω}∪{qI

s}, (5)

AI
s := {a ∈ A : ∃q ∈ BI

s such that a = a∗R(q)}. (6)

Proof. First, assume q ∈ BI
s. I construct a model for the narrator n that results in posterior belief q

and has a better fit than the sender’s model I under signal s, that is, qn
s = q and Pn(s)> PI(s). The

model n only sends two signals s and t with positive probability, where t , s. An equivalent way of
writing the condition in equation (5) is that [maxω̃∈Ω

q(ω̃)
p(ω̃) ]

−1 > PI(s). Let λ = [maxω̃∈Ω
q(ω̃)
p(ω̃) ]

−1

and the model n be given by:

n(s | ω) =
λq(ω)

p(ω)
, n(t | ω) = 1− λq(ω)

p(ω)
. (25)

First, as λ ≤ p(ω)
q(ω) for all ω ∈ Ω, I have n(s | ω) ≤ 1. Next, I show that the model n induces

posterior belief q under the signal s.

Pn(s) = ∑
ω∈Ω

λq(ω) = λ , qn
s (ω) =

p(ω)n(s | ω)

Pn(s)
= q(ω). (26)

By assumption, from equation (5), I have λ > PI(s), so the receiver chooses model n over I
under signal s. Thus, the narrator can induce posterior belief q under the signal s.

I prove the converse by contradiction. Let q be a feasible posterior belief conditional on the
signal s that does not satisfy equation (5). So, for some ω∗ ∈Ω, I have

p(ω∗)

q(ω∗)
≤ PI(s). (27)

As q is feasible, there exists a model n such that qn
s = q and Pn(s)> PI(s).

PI(s)< Pn(s) =
n(s | ω)p(ω)

q(ω)
∀ω ∈Ω. (28)

But from equation (27), I have
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p(ω∗)

q(ω∗)
<

n(s | ω)p(ω)

q(ω)
∀ω ∈Ω. (29)

But this implies n(s | ω∗)> 1, which is a contradiction.
The condition for feasible actions in equation (6) follows directly from the condition on the

feasible posterior beliefs. The narrator can induce an action if he can induce a posterior belief
under which the action is optimal for the receiver.

Lemma 2. The set Ca is a finite disjoint union of convex sets for any vector of actions a ∈ A|S|.

Proof. Fix a vector of subsets of actions R = (Rs)s∈S ∈ P(A)|S|.31 Let Ca,R denote the subset of
models where the vector of induced and feasible actions are given by a and R, respectively.

Ca,R = {I ∈ F : aI
s = as,AI

s = Rs∀s ∈ S} ⊂Ca. (30)

First, I show that the set Ca,R is a convex set for any pair (a,R). Assume Ca,R is non-empty.
Let I1 and I2 belong to Ca,R. Let Iα =αI1+(1−α)I2 denote the convex combination of the models
I1 and I2, where α ∈ (0,1).32 I show that Iα ∈ Ca,R for all α ∈ (0,1). First notice, that the fit of
the model Iα lies in between the model I1 and I2.

PIα (s) = αPI1(s)+(1−α)PI2(s) ∀s ∈ S. (31)

To see that Ca,R is convex, let a ∈ Rs, I show a ∈ AIα
s . From Eq. (27), I know there exist q such

that a∗R(q) = a and such that

[max
ω∈Ω

q(ω)

p(ω)
]
−1

> PIi(s) for i = 1,2, (32)

⇒[max
ω∈Ω

q(ω)

p(ω)
]
−1

> max
i=1,2

PIi(s)> PIα (s). (33)

Thus, this implies a ∈ AIα
s . Now, I show it is also optimal for the narrator to induce the action

a when the sender’s model is Iα and the signal is s, that is, a ∈ aIα . Recall as I1 and I2 belong to
Ca,R, the vector of induced actions is given by a. Thus, I have

as ∈ argmax
a∈Rs

E
qIi

s
[uN(ω,a)] for i = 1,2. (34)

31Here P(A) refers to the power set of the set A.
32Formally, Iα(s | ω) = αI1(s | ω)+(1−α)I2(s | ω) for all ω ∈Ω and s ∈ S.
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However, since Iα is a convex combination of I1 and I2, this implies qIα
s ∈ (qI1

s ,q
I2
s ). Thus, this

implies as ∈ aIα
s for all s ∈ S. So, I have shown that the set Ca,R is convex.

To complete the proof, take the union of all vector of subsets of actions where the induced
vector of action is a.

Ca =
⋃

R∈P(A)|S|
Ca,R

As the power set of the set A is finite, this a union over finitely many subsets. Thus, I have
shown that the set Ca is a disjoint finite union of convex sets.

Theorem 1. The optimal signal-generating model

I∗ := argmax
I∈F

V (I) (11)

corresponds to an extreme point of the set Ca for some a ∈ A|S|. Furthermore, Ext(Ca) is finite for
all a ∈ A|S|.

Proof. Recall that the set Ca,R denotes the subset of models where the vector of induced and
feasible actions are given by a and R respectively.

Ca,R := {I ∈ F : aI
s = as,AI

s = Rs∀s ∈ S} ⊆Ca. (35)

First, I find the optimal policy within each set Ca,R for a given a ∈ A|S| and R ∈ P(A)|S|. Note
that the value function is linear within each such set, as it given by the receiver’s expected utility
given the vector of induced actions. As the vector induced actions remains the same, it is linear, or
in general, convex. By the Bauer maximum principle (Ok, 2007, p. 658), the optimal model can
be found at some extreme point of the closed convex set Ca,R.

Similarly, as the set Ca is given by a finite disjoint union of convex sets, I can restrict the search
for each a to the extreme points of all possible convex sets Ca,R.

Ext(Ca) = {I ∈Ca : I ∈ Ext(Ca,R) whenever I ∈Ca,R}, (36)

=
⋃

R∈P(A)|S|
Ext(Ca,R). (37)

To find the overall optimal model, one needs to take the union over all possible induced vectors
of actions. All that is left to show is that the set of such extreme points is finite. To do so, I show
that any set Ca,R is the intersection of the finite collection of closed half spaces and thus must have
finite extreme points.

Ca,R :=
⋂
s∈S

⋂
b∈Rs

{I ∈ F : EqI
s
[uN(ω,as)]≥ EqI

s
[uN(ω,b)]}. (38)
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The set of signals and the sets of feasible vectors of actions are finite. Therefore, each set Ca
has finitely many extreme points.

Proposition 1. If uN =−uR, then for any s ∈ S, the no disclosure model INDs is optimal. Addition-
ally, any optimal model induces the unique action a∗R(p).

Proof. I show that both agents can guarantee the utility (or outcome) corresponding to the no
disclosure model INDs for some s ∈ S.

First, I show the sender can secure non-negative value of information by using the model INDs ,
that is, V (INDs) = 0 ∀s ∈ S. The no disclosure model INDs has the maximal fit among the set of
all models for the signal s. This signal is observed with certainty and the narrator cannot come up
with any interpretation with a better fit.

On the other hand, assume a model I is optimal which leads to a different outcome than the no
disclosure model. This implies that V (I)≥ 0. So, there exists some signal (which is observed with
positive probability) under which the action a is induced which does strictly better than a∗R(p), that
is EqI

s
[uR(ω,aI

s)]> EqI
s
[uR(ω,a∗R(p))].

However as the narrator’s utility is perfectly misaligned with the receiver’s, this implies the
narrator’s expected utility is negative, that is, EqI

s
[uN(ω,aI

s)]<EqI
s
[uN(ω,a∗R(p))]. But, the narrator

can choose the no disclosure model INDs on observing signal s. This model is chosen over the
sender’s model I (as it is not no disclosure) and is a profitable deviation for the narrator. This again
results in the induced action a∗R(p). So, this outcome cannot be the equilibrium.

Thus, I have shown that the no disclosure model INDs is optimal when the preferences of the
narrator and the receiver are perfectly misaligned. Also, the induced outcome is unique under any
optimal model.

Proposition 2. For binary states and a narrator with state-independent utility, the full disclosure
model IFD is optimal if uR(ω,aIFD

ω )≥ uR(ω,a∗R(p)) for all ω ∈Ω.

Proof. From assumption, the full disclosure model leads to an expected utility higher than that of
providing no information. Therefore, the optimal signal-generating model I∗ is at least partially
informative.

Assume I∗ is not full disclosure and let Ω ⊆ S. From Lemma 2, the optimal model can be
found at an extreme point of the set Ca. For binary states and state-independent preferences of
the narrator, this implies that atleast one state will be fully disclosed, i.e., qI∗

ω = δω for some
ω ∈Ω = {ω0,ω1}. Without loss of generality, assume that this state is ω0.

As I∗ is obtained by pooling ω0 and ω1 from IFD, I have PI∗(ω0) ≤ PIFD(ω0). However, the
narrator can still include any belief q ∈ [δω0 , p]. This is because the narrator can choose any convex
combination of the full disclosure model IFD and the no disclosure model INDω0

which sends signal
ω0 with probability 1. This combination has a better fit than I∗ under ω0 and induces the belief that
lies in between δω0 and p. So, I have uR(ω0,aI∗

ω0
) ≤ uR(ω0,a

IFD
ω)

). The action for signal ω0 under
the model I∗ performs at worst no better than the full disclosure model.

Now, for I∗ to be optimal we need that uR(ω1,aI∗
ω1
)≥ uR(ω1,a∗R(p)). If this does not hold then

full disclosure model would be a profitable deviation. So, the chosen action is optimal at a belief
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q∗1 closer to the state ω1 than p. As PI∗(ω1)≥ PIFD(ω1), I have AI∗
ω1

⊆ AIFD
ω1 . So, if aIFD

ω1 ∈ AI∗
ω1

, then
the narrator would choose it. This means that aIFD

ω1 < AI∗
ω1

. But this implies the action aIFD

ω1
is closer

to the state ω1 than the action aI∗
ω1

. But then the sender can deviate profitably by providing more
information and induce action aIFD

ω1 . This deviation results in the exactly the same action as the full
disclosure model.

However this model can be written as a convex combination of the full disclosure and no
disclosure model. But from the assumption the induced actions perform better than the optimal
action at the prior. And as the value function is linear when the induced actions remain the same,
this implies the sender prefers the full disclosure model. Thus, I have shown that any model I∗ that
does not fully disclose must be suboptimal.

Corollary 2. Given any narrator with state-independent utility, there exists a prior belief p ∈
int(∆Ω) such that the full disclosure model IFD is not optimal.

Proof. Assume the narrator’s most preferred action among the set of actions that are optimal for
the receiver at some belief is a. From assumption, this action is not optimal for all beliefs. Let p
be the (interior) belief, such that a ∈ a∗R(p) and a < a∗R(p+ ε) for any ε > 0.

I will derive conditions for ε such that the full disclosure model is not optimal for the prior
belief p+ ε . From Lemma 1, I can verify that the narrator can induce his preferred action a with
probability 1 if

1− p
1− p− ε

> p and
p

p+ ε
> 1− p. (39)

Both the conditions is satisfied if ε < p2

1−p . Thus, the narrator is able to induce the action a with
probability 1. But recall this is not the receiver’s optimal action given her prior as a < a∗R(p+ ε).
So, providing no information such that the receiver’s belief stays fixed at p+ ε is a profitable
deviation. Thus, IFD is not an optimal model.

Proposition 3. If F =MC, the sets of feasible posterior beliefs and actions that the narrator can
induce given sender’s model I ∈MC and the signal ω are given by

BI
ω := {q ∈ Pω :

p(ω)

q(ω)
> PI(ω)}∪{qI

ω}, (13)

AI
ω := {a ∈ A : ∃q ∈ BI

ω such that a = a∗R(q)}. (14)

Proof. Assume q ∈ BI
ω . I construct a model for the narrator n ∈MC that results in posterior beliefs

q and has a better fit than model I under signal ω , that is, qn
ω = q and Pn(ω)> PI(ω). The model

n only sends two signals ω and ¬ω with positive probability, where ¬ω , ω .
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n(ω | ω̃) =
q(ω̃)p(ω)

p(ω̃)q(ω)
n(¬ω | ω̃) = 1− q(ω̃)p(ω)

p(ω̃)q(ω)
for all ω̃ ∈Ω. (40)

First, note that have as q ∈ Pω , I have q(ω̃)
p(ω̃) ≤

q(ω)
p(ω) for all ω̃ ∈Ω. So, this implies n(ω | ω̃)≤ 1

for all ω̃ . The model n induces posterior belief q under signal ω .

Pn(ω) =
p(ω)

q(ω)
qn

ω(ω̃) =
p(ω̃)n(ω | ω̃)

Pn(ω)
= q(ω̃). (41)

From assumption, I have Pn(ω) > PI(s), so the receiver chooses model n over I under signal
ω . Thus, the narrator can induce posterior belief q under the signal ω .

For the converse, I prove this by contradiction. (a) Suppose q is feasible but q < Pω . So, there
exists a model n ∈MC such that qn

ω = q and Pn(ω)> PI(ω). But this implies that

q(ω)
q(ω̃)

p(ω)
p(ω̃)

=
n(ω | ω)

n(ω | ω̃)
, (42)

⇒ 1 >
n(ω | ω)

n(ω | ω̃)
for some ω̃ ∈Ω. (43)

But this is a contradiction as from assumption the model n ∈MC. So, the signal ω has to be
most likely be generated in the state ω .

(b) Suppose q is feasible but q(ω) > p(ω)
PI(ω) . As q is feasible, there exists a model n such that

qn
ω = q and Pn(ω)> PI(ω).

PI(ω)< Pn(ω) =
n(ω | ω)p(ω)

q(ω)
. (44)

But by assumption, I have

p(ω)

q(ω)
<

n(ω | ω)p(ω)

q(ω)
. (45)

But this implies n(ω | ω)> 1, which is a contradiction.

Lemma 3. For any prior belief p ∈ (0,1), the optimist (asymptotically) learns the biased state G
almost surely if
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[ κ − ε
1−κ + ε

]κ
<
[ κ + ε

1−κ − ε
](1−κ)

. (19)

Proof. I show that even when the state is B, the optimistic employee’s belief converges to the
(incorrect) state G almost surely.

In any round n ∈ N, the news sn is generated according to the model I(· | B), where I(g | G) =
I(b | B) = κ. This implies that in the long run, he observes bad news b in κ fraction of the rounds
and good news g in (1−κ) fraction of the rounds. Let sn = (s1, ...sn) denote the sequence of news
observed in the first n rounds. Formally, I want to show

lim
n→∞

qO
sn = δG PI(·|B)−a.s. (46)

where, qO
sn is the posterior belief of the optimistic employee given the sequence of news sn

First, I show a useful property that the order of sequence of news does not impact the posterior
belief. Consider the sequence of news g,b and b,g respectively. I have

qO
g,b =

p(ω)ng(g | ω)nb(b | ω)

Png(g) ·Pnb(b)
, (47)

=
Pnb(ω | b)ng(g | ω)

Png(g)
= qO

b,g (48)

The key aspect is that, irrespective of the order, the receiver uses fixed models ng and nb to
process good and bad news, respectively. Thus, one can choose any sequence of order as long as
the proportion of good and bad news remains the same.

Assume the employee observes n signals, of which κn are bad news and (1−κ)n good news,
where κn and (1−κ)n are natural numbers. If his posterior belief on state G after observing the n
sequence of news is greater than the prior belief, then in the long run his beliefs will converge to
good state δG. Assume that the employee first observes the κn sequence of bad news and then the
(1−κ)n sequence of good news.

Let x = 1−q
q denote the likelihood ratio of the belief after observing the κn sequence of bad

news. I derive the condition that after observing (1− κ)n sequence of good news, his posterior
belief is higher than the prior belief p.

(κ + ε)(1−κ)n

(κ + ε)(1−κ)n + x(1−κ − ε)(1−κ)n > p,

( k+ ε
1−κ − ε

)(1−κ)n
·
(1− p

p

)
> x.

Now, in place of x, I substitute the likelihood ratio that I get after observing the κn sequence
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of bad news, so I have

x =
(1− p

p

)
·
( κ − ε

1−κ + ε
)κn

.

Thus, I have the following condition:

( κ − ε
1−κ + ε

)κ
<
( k+ ε

1−κ − ε
)(1−κ)

.

Proposition 4. For any prior belief p ∈ (0,1), the optimist (asymptotically) learns the correct state
almost surely under the optimal model I∗ ∈Mε , where the model I∗ is given by:

I∗(g | G) = κ − ε, I∗(b | B) = κ + ε. (20)

Proof. The difficult part of the proof is to show that when the state is B, the optimistic employee’s
belief converges to the correct state B almost surely.

In any round n ∈ N, the news sn is generated according to the model I∗(· | B). This implies
that in the long run, he observes bad news b in the κ +ε fraction of the rounds and good news g in
(1−κ − ε) fraction of the rounds. Let sn = (s1, ...sn) denote the sequence of news observed in the
first n rounds. Formally, I want to show

lim
n→∞

qO
sn = δB PI∗(·|B)−a.s. (49)

where, qO
sn is the posterior belief of the optimist given the sequence of news sn

Observing bad news b, the employee updateshis beliefs using the true signal-generating model
I∗. This follows, as no model n ∈Mε has a better fit than I∗ on bad news b. While observing good
news g, the employee interprets using the model ng which has precision κ + ε .

Assume that the employee observes n signals, of which (κ + ε)n signals are bad and (1−κ −
ε)n signals are bad. If his posterior belief on state G after observing the n sequence of news is
greater than the prior, then in the long run his beliefs will converge to good state δG. Assume that
the employee first observes the (κ +ε)n sequence of bad news and then the (1−κ −ε)n sequence
of good news.

Let x = 1−q
q denote the likelihood ratio of the belief after observing the (κ + ε)n sequence

of bad news. I derive the condition that after observing (1−κ − ε)n sequence of good news,his
posterior belief is higher than the prior belief p.
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(κ + ε)(1−κ−ε)n

(κ + ε)(1−κ−ε)n + x(1−κ − ε)(1−κ−ε)n > p,

( κ + ε
1−κ − ε

)(1−κ)n
·
(1− p

p

)
> x.

Now, in place of x, I substitute the likelihood ratio that I get after observing the (κ + ε)n
sequence of bad news, so I have

x =
(1− p

p

)
·
( κ + ε

1−κ − ε
)(κ+ε)n

.

However, this happens when the following condition holds:

( κ + ε
1−κ − ε

)(κ+ε)
<
( κ + ε

1−κ − ε
)(1−κ−ε)

.

But this inequality does not hold for any values of κ and ε . This ensures that the employee
learns the correct state almost surely. Thus, to counter the asymmetric reaction by the receiver, the
sender sends bad news with a higher frequency compared to bad news.

Lemma 4 (ex-ante interpretation). Given the sender’s model I and signal s, the set of feasible
posterior beliefs and actions that the narrator can induce are:

BI
s := {q ∈ (∆Ω) :

p(ω)

q(ω)
> PI(s) ∀ω ∈Ω}∪{qI

s}, (22)

AI
s := {a ∈ A : ∃q ∈ BI

s such that a = a∗R(q)}. (23)

Proof. First, assume q = (qs)s∈S ∈ BI . I construct a menu of models N =
⋃

s∈S ns for the narrator
such that given the signal s, the model ns results in the posterior belief qs and it has a better fit than

other models i.e., qns
s = q and Pns(s)> Pm(s) for m ∈ {I}

⋃
t,s{nt}. Let λs = [maxω∈Ω

qs(ω)
p(ω) ]

−1
.

ns(s | ω) =
λsqs(ω)

p(ω)
, ns(t | ω) = (

λt

∑r,s λr
)
(
1− λsqs(ω)

p(ω)

)
for all t , s. (50)

If the receiver uses model ns on observing signal s, the posterior belief equals qs. From as-
sumption, model ns has a better fit than sender’s model I.

Pns(s) = ∑
ω∈Ω

p(ω)λsqs(ω) = λs, qns
s (ω) =

p(ω)ns(s | ω)

Pns(s)
= qs(ω). (51)
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Now, I show that it also has a better fit than other models of the narrator in the menu. For any
other model nt , I have

Pnt (s) = ∑
ω

p(ω)(
λs

∑r,t λr
)
(
1− λtqt(ω)

p(ω)

)
, (52)

= λs
( 1−λt

∑r,t λr

)
. (53)

However, I have

1−λt

∑r,t λr
≤ 1−PI(t)

∑r,t PI(r)
= 1. (54)

This implies that

Pnt (s) = λs
( 1−λt

∑r,t λr

)
≤ λs = Pns(s). (55)

So, given signal s, the model ns has a better fit than the model nt .
Now, I prove the converse. Assume q < BI . Assume the inequality is not satisfied for signal s.

It follows, from Lemma 1, that the narrator cannot come up with a model ns that induces belief qs

and has a fit greater than [maxω∈Ω
qs(ω)
p(ω) ]

−1
. But from assumption, I have

PI(s)≥ [max
ω∈Ω

qs(ω)

p(ω)
]
−1

. (56)

Thus, the narrator cannot come up with a model ns such that qns
s = qs and has better fit than the

sender’s model I.

Proposition 5. If η1 > η2, then BI
s(η1)⊆ BI

s(η2) and AI
s(η1)⊆ AI

s(η2) for all s ∈ S and I ∈ F.

Proof. Assume η1 > η2 and q ∈ BI
s(η1). I will show that q ∈ BI

s(η2). As q ∈ BI
s(η1), ∃n such that

qn
s = q and Pn(s)≥ η1PI(s).

As η1 > η2, this implies that Pn(s)≥ η2PI(s). The narrator can use the same model n to induce
belief q. Thus, q ∈ BI

s(η2). This also implies that if any action a belongs to the set AI
s(η1) then it

also belongs to the set AI
s(η2).
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