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Abstract. We study whether a social planner can improve the efficiency of learning,
measured by the expected total welfare loss, in a sequential decision-making environ-
ment. Agents arrive in order and each makes a binary action based on their private signal
and the social information they observe. The planner can intervene by jointly designing
the social information disclosed to agents and offering monetary transfers contingent
on agents’ actions. We show that, despite such flexibility, efficient learning cannot be
restored with a finite budget: whenever learning is inefficient without intervention, no
combination of information disclosure and transfers can achieve efficient learning while
keeping total expected transfers finite.

1. Introduction

Many decisions under uncertainty are made in a social context, in which individuals rely
on both their private information and the observed actions of others. Understanding how
quickly privately held information is aggregated in a population is central to explaining
collective outcomes across diverse domains—including the adoption of new technologies
and medical treatments, investment decisions, and political opinion formation. Yet, this
aggregation process need not be efficient: actions only provide coarse information about
agents’ private information and agents may persistently make mistakes. This raises a
natural question: can a social planner intervene to accelerate learning and improve its
efficiency?

To study this question, we consider the canonical sequential social learning model
[Bikhchandani, Hirshleifer, and Welch, 1992, Banerjee, 1992], in which agents arrive in
order and each receives a private signal. Unlike the standard model—where each agent
observes the actions of all her predecessors—we introduce a social planner who can in-
tervene by jointly designing the social information disclosed to the agents and offering
monetary incentives to influence their decisions. Given the planner’s intervention, each
agent chooses a binary action in order to match an unknown binary state.

We measure the speed of learning using the criterion of efficient learning, introduced
by Rosenberg and Vieille [2019], which requires that the expected number of agents
who choose incorrectly be finite. This criterion captures not only eventual correctness
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of behavior—thereby ruling out incorrect herds—but also the welfare losses incurred
along the path to convergence. In the absence of planner’s intervention, Smith and
Sørensen [2000] show that with unbounded signals, the total number of agents who choose
incorrectly must be finite, but its expectation may be either finite or infinite. Indeed, a
finite expectation is achieved only when agents receive highly informative private signals
with sufficiently high probability [Rosenberg and Vieille, 2019]. This is a demanding
condition that many signal distributions do not satisfy, so learning is often inefficient.

To illustrate the source of this inefficiency, suppose all private signals were made pub-
licly observable. This is equivalent to a single agent who repeatedly receives private
signals and takes an action in each period. As is well known, in this case learning is
efficient for any non-trivial signal distribution, including noisy binary signals that are not
unbounded.1 Thus, inefficient learning does not arise from a lack of information per se.
Rather, it arises because observed actions are only partially informative about private
signals and, more importantly, because these actions reflect agents’ strategic behavior.

As we discuss in Section 3, in a benchmark case where the planner does not need to
account for agents’ strategic incentives, efficient learning can always be achieved. This
indicates that coarsening from signals to actions alone is not the primary driver of in-
efficient learning.2 We therefore focus on agents’ incentives—which depend both on the
social information they observe and on monetary rewards—and ask whether a social plan-
ner can improve learning efficiency by shaping these incentives. To do so, the planner has
two instruments: for each agent, he can (i) design what information about earlier agents’
actions is revealed, and (ii) issue a monetary transfer to subsidize one of the two actions
contingent on this information.

We focus on a class of unbounded signals with well-behaved tails. This is a mild
assumption that rules out distributions with irregular tail behavior and allows efficient
learning to be characterized by a single parameter that measures tail thickness. Our
main result (Theorem 1) shows that, despite the planner’s flexibility, efficient learning
cannot be restored with a finite budget: whenever the underlying signal distribution
yields inefficient learning in the absence of intervention, no combination of disclosure
policy and transfer scheme can achieve efficient learning with a finite expected total
transfer. In particular, this result implies that no disclosure policy can, on its own,
restore efficient learning (Corollary 2). Compared to the benchmark case, this result thus
highlights agents’ strategic incentives as the main source of inefficiency.

1More specifically, learning can be viewed as very efficient in this setting since not only does the total
number of mistakes have finite expectation, but each agent’s mistake probability also converges to zero
exponentially fast. See, e.g., Hann-Caruthers, Martynov, and Tamuz [2018], Rosenberg and Vieille [2019],
Harel, Mossel, Strack, and Tamuz [2021], Huang, Strack, and Tamuz [2024], and Brandl [2025] for related
results on the speed of learning.
2As another extreme, Arieli and Mueller-Frank [2017] show that when actions are continuous, private
signals are encoded one-to-one into actions and can therefore be inferred from observed behavior. Thus,
learning is always efficient.

2



FLORIAN BRANDL, WANYING HUANG, AND ATULYA JAIN

The mechanism behind Theorem 1 is as follows. From the perspective of informa-
tion design, the planner faces a fundamental tradeoff between providing precise social
information to keep the current agent’s mistake probability low, and extracting enough
information from the agent’s action to inform future agents. Since the agent is strategic,
receiving precise social information induces her to rely heavily on it and to largely ignore
her private signal. As a result, the more precise the social information, the less informa-
tive her action becomes, undermining the planner’s ability to learn from it. Conversely,
when the social information is imprecise, the agent relies more on her own private signal,
making her action more informative to the planner, but at the cost of a higher mistake
probability.

A similar tension arises when the planner uses monetary incentives. Intuitively, sub-
sidizing the contrarian action—that is, the action opposite to the one favored by social
information—encourages agents to act on their private signals. This accelerates learning
as it allows the planner to infer more from their actions. Yet, if agents nonetheless con-
tinue to choose the action favored by social information despite such subsidies, it would
strengthen future agents’ inferences about that action being correct, forcing the planner
to offer even larger transfers over time. Thus, while transfers can in principle alleviate
this tension and restore efficient learning, doing so requires an infinite amount.

In sum, we show that the aforementioned tensions are insurmountable: any disclosure
policy or transfer scheme that provides agents with the appropriate incentives to achieve
efficient learning necessarily either leaves the planner with too little information to sustain
precise social beliefs or requires transfers so large that their expected total amount is
infinite.

We contribute to the literature of social learning in three aspects. First, previous work
has largely focused on full (social) information disclosure, showing that insufficiently in-
formative signal structures are the key determinant of inefficient learning. By contrast,
we consider general information disclosure policies and show that inefficiency stems from
agents’ strategic incentives, rather than from limitations of the signal structure alone.
Second, while different information structures have been shown to improve learning out-
comes, our main result suggests that such improvements are fundamentally limited: they
cannot restore efficient learning, even with the help of finite transfers. Third, our proof
techniques directly use the induced distribution of agents’ beliefs, rather than analyzing
trajectories of beliefs and actions across periods. These techniques could be useful in
other social learning settings or, more generally, in multi-period learning environments.

Related Literature. A closely related paper is Rosenberg and Vieille [2019], which
characterizes the conditions for efficient learning in a sequential social learning environ-
ment with a general signal distribution. Moreover, they show that this condition holds
regardless of whether agents observe the entire history of past actions or only the action
of their immediate predecessor. This leaves open the question of whether there exists
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a social information disclosure policy under which learning is efficient whenever signals
are unbounded. As suggested by our main result, the answer is negative, at least for
tail-regular signals.

Similar negative results have been documented in the recent literature on social learning
with misspecification, which highlights a distinct mechanism through which learning can
fail. For example, Bohren [2016] shows that when agents have misspecified beliefs about
the correlation in others’ actions, a large degree of misspecification can harm learning.3 In
a broader framework, Frick, Iijima, and Ishii [2023] demonstrate that even mild misspeci-
fication can lead to extreme learning failure. Relatedly, in a repeated setting, Chen [2024]
identifies the phenomenon of group irrationality as the cause of belief nonconvergence.

At the same time, this literature has also identified some forms of misspecification
that can improve learning. With binary signals, Bernardo and Welch [2001] demonstrate
mostly numerically that the presence of occasionally overconfident agents has a posi-
tive effect on learning. Indeed, in a setting close to ours, Arieli, Babichenko, Müller,
Pourbabaee, and Tamuz [2025] show that within the same class of unbounded signals
that we consider, a mild form of overconfidence can restore efficient learning in cases
where learning would be inefficient under correct specification. By contrast, in our set-
ting, agents are fully rational and strategically respond to incentives; consequently, the
positive learning effects from misspecification do not apply.

Our insight that agents’ strategic incentives can undermine learning outcomes is not
entirely new. Such an observation already appears in Rosenberg and Vieille [2017]—a
working paper version of Rosenberg and Vieille [2019]—which circumvents strategic in-
centives by considering a planner who can dictate agents’ strategies. They provide a
sequence of cutoff strategies under which learning is efficient for a uniform signal distri-
bution. Similarly, Smith, Sørensen, and Tian [2021] study a setting in which a planner
can also dictate agents’ strategies, but instead aims to maximize discounted social wel-
fare. With the same objective, Martynov [2020] studies the optimal pricing policy of
a planner who can subsidize and tax goods in every period. Even for such planners,
characterizing the social optimum is known to be technically challenging.4 We therefore
ask whether a social planner who respects agents’ strategic incentives can ever improve
learning efficiency.

Our paper is also related to the literature on sequential social learning with different
observational structures. With bounded signals, Acemoglu, Dahleh, Lobel, and Ozdaglar
[2011] provide a sufficient condition on a stochastic, independent network structure un-
der which the probability that agents choose incorrectly converges to zero.5 Peres, Rácz,

3See Bohren and Hauser [2021] for a more general treatment on different types of misspecifications.
4To the best of our knowledge, this remains an open question.
5Relatedly, Lobel and Sadler [2015] study learning in networks where the set of observed neighbors may
be correlated across agents, highlighting how departures from independence affect learning outcomes.

4



FLORIAN BRANDL, WANYING HUANG, AND ATULYA JAIN

Sly, and Stuhl [2020] later characterize the optimal rate at which a stream of “sacri-
ficial lambs”—that is, agents who observe nothing except their private signals—should
be injected to accelerate the rate at which the mistake probability converges to zero.
More recently, Xu [2025] considers a setting in which agents arrive in cohorts and observe
coarse signals of past cohorts’ actions, and provides necessary and sufficient conditions for
learning in probability.6 Arieli, Babichenko, and Hann-Caruthers [2024] study a comple-
mentary problem in which a regulator can garble agents’ private signals, rather than the
social information, to maximize the probability that agents herd on the correct action.
For comprehensive surveys on recent developments in social learning, see, e.g., Golub and
Sadler [2016], Bikhchandani et al. [2024].

2. Model

2.1. Baseline. Time is discrete, and the horizon is infinite, i.e., t ∈ N = {1, 2, . . .}.
There is a binary state θ ∈ {h, ℓ} with a uniform prior. A sequence of agents indexed
by time t arrive in order, each acting once by choosing a binary action at ∈ {h, ℓ}.
Agents have a normalized base utility: a correct action yields a payoff of one and an
incorrect action yields zero. Before acting, agent t observes the actions of all predecessors,
Ht = (a1, . . . , at−1).

In addition, agent t receives a private signal st ∈ S where S is a measurable set of
signal realizations. Conditional on θ, private signals are independent across agents. Let
qt = P[θ = h | st] be the agent’s posterior belief conditional on the private signal. Since
qt is a sufficient statistic for θ given st, we assume that st = qt. Denote by Fh and Fℓ the
CDFs of qt conditioned on θ = h and θ = ℓ, respectively. The unconditional CDF is thus
F = 1

2
(Fh +Fℓ). We assume that F is symmetric about 1/2, i.e., F (q)+F (1− q) = 1 for

each q. Equivalently, the pair of conditional CDFs (Fh, Fℓ) is symmetric about 1/2, i.e.,
Fh(q) + Fℓ(1− q) = 1. We further assume that Fh and Fℓ are continuous, so that agents
are almost surely not indifferent between actions. We use Ph to denote P[·|θ = h], the
probability measure conditional on θ = h, and use Pℓ analogously.

We say that signals are unbounded if the support of qt contains 0 and 1 [Smith and
Sørensen, 2000]. Following Rosenberg and Vieille [2019] and Arieli et al. [2025], we say
that learning is efficient if the expected number of incorrect choices is finite,

(2.1)
∞∑
t=1

P[at ̸= θ] < ∞,

and inefficient otherwise. Efficient learning implies that the number of incorrect choices
is finite.

6A similar cohort setup also appears in Section 2.6 of Rosenberg and Vieille [2019].
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In the above setting, Rosenberg and Vieille [2019] show that learning is efficient if and
only if the following condition for private signals holds:∫ 1

0

1

F (x)
dx < ∞.(2.2)

Intuitively, efficient learning requires not only the existence of highly informative signals,
but also that such signals occur with sufficient frequency so that incorrect herds can be
overturned quickly.

For tractability, we impose a regularity condition on the signal structure that restricts
only the tail behavior of the distribution. Specifically, the symmetric unconditional dis-
tribution F is tail-regular if there exists α > 0 such that

0 < lim inf
q→0

F (q)

qα
≤ lim sup

q→0

F (q)

qα
< ∞,

in which case we write F (q) = Θ(qα). In other words, F (q) behaves like qα near q = 0.
Hence, a larger value of α corresponds to a lower likelihood of receiving very informative
signals. Clearly, the uniformly distributed private beliefs, i.e., F (q) = q, are tail-regular
with α = 1. On the other hand, Gaussian signals with state-dependent means are not
tail-regular.

Note that all tail-regular signals are unbounded. Moreover, under tail-regular signals,
the criterion for efficient learning is precisely captured by the single parameter α: a lower
value of α corresponds to a higher likelihood of receiving very informative signals. It
follows from (2.2) that learning is efficient if α < 1, and becomes inefficient once α ≥ 1.

2.2. Planner’s Intervention. We now introduce a social planner who seeks to accel-
erate learning—that is, to achieve efficient learning by speeding up the convergence of
the mistake probability to zero—through interventions in agents’ decisions. The planner
observes the agents’ actions, but not their private signals or the state θ. That is, at each
time t, he knows the entire past action history Ht = (a1, . . . , at−1). The planner has two
instruments at his disposal, information disclosure and transfers, which we describe in
detail below.

Information Disclosure. Recall that in the baseline model, the social information available
to each agent t consists of the full past action history Ht. Under intervention, the planner
instead determines what social information is disclosed to each agent. Formally, given a
history Ht, the planner first forms the Bayesian belief

πt := P[θ = h | Ht]

about the state being high. Then, at each time t ≥ 1, conditional on πt, the planner
selects—possibly at random—a signal to disclose to the agent, which induces a social belief
νt for agent t. As is well-known, any distribution that is a mean-preserving contraction
of the distribution of πt can be induced as the distribution of νt, via some signal based on
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πt. We interpret νt directly as the signal revealed to the agent, so that the information
available to her before choosing an action is (qt, νt)—her private signal plus the social
information revealed by the planner.7

The disclosure mechanisms described above encompass a broad range of informational
policies available to the planner. At one extreme, the planner may choose a full disclosure
policy, under which he fully reveals his belief so that νt = πt for each t. This is equivalent
to the baseline model where the entire history of past actions is revealed to the agent. At
the other extreme, the planner may adopt a no disclosure policy, under which the agent
receives no social information—i.e., observes no past action history—so that νt = 1/2.
As an intermediate case, the planner may adopt a partial disclosure policy, under which
only the k most recent actions are revealed. That is,

νt = P[θ = h | at−k, . . . , at−1],

so that the agent observes only a truncated history. As another example, the planner
may employ a stochastic disclosure policy: with probability εt(πt), he fully reveals his
belief πt to the agent, and with the complementary probability 1 − εt(πt), he discloses
no information. The agents who receive no social information under such a policy are
known as “sacrificial lambs.”

Transfers . Beyond shaping agents’ social information, the planner can also influence be-
havior through monetary incentives. Specifically, the planner may offer transfers to each
agent prior to her action. These transfers can thus depend on the agent’s action and on
the information disclosure policy applied to the agent.

Formally, a transfer scheme τ = (τt)t consists of a sequence of functions where each
τt : [0, 1] → R. At time t, if agent t takes the high action with induced social belief νt,
she receives additional transfer τt(νt) that depends only on νt. It is without loss of gen-
erality to restrict attention to transfer schemes that depend only on the current induced
social belief, rather than on the full action history. This is because any history-dependent
transfer scheme can be replicated by a planner using a transfer that conditions only on
νt, as an agent’s incentive to take an action is determined by the pair (νt, τt). Moreover,
note that transfers do not depend on the planner’s belief and therefore do not convey
additional information about the state beyond what is already contained in the agent’s
induced social belief.8

7Note that it is without loss of generality to assume that the distribution of νt depends only on πt,
rather than also on ν1, . . . , νt−1. This is because any such policy induces a joint distribution of (πt, νt),
which the planner can replicate without conditioning on past induced social beliefs, since the evolution
of beliefs depends only on (πt, νt).
8Allowing transfers to depend on the realized state does not affect agents’ incentives. Since agents
are expected utility maximizers, any state-contingent transfer scheme induces, in expectation, the same
incentives as a scheme that depends only on the agent’s action and induced social belief, and is therefore
behaviorally equivalent.
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2.3. Agents’ Decision. Given an information disclosure policy and a transfer scheme,
the agent’s decision problem can be decomposed into two parts: belief formation and
action choice. At time t, the agent first forms a posterior belief,

pt := P[θ = h | νt, qt],

by combining her private belief qt with the induced social belief νt. Conditional on this
belief, the agent then chooses an action while taking into account the current transfer
τt(νt). Recall that the base payoff from taking the correct action is normalized to one.
Thus, choosing the high action maximizes agent t’s expected payoff if

(2.3) pt ≥
1

2
(1− τt(νt)).

Observe that when τ = 0, this cutoff reduces to the case without transfers. From
(2.3), we see that a positive transfer τ > 0 lowers the cutoff for taking the high action
and thus subsidizes the high action, whereas a negative transfer τ < 0 raises the cutoff
and subsidizes the low action. Throughout, we restrict attention to transfer schemes
satisfying |τ | < 1, since any transfer scheme outside this range would make one action
strictly dominant regardless of the agent’s belief.

3. The First-Best Benchmark

As a benchmark, we briefly discuss the case in which the social planner can directly
dictate agents’ strategies. This is a stronger intervention regime than those considered
above, as the planner no longer needs to account for agents’ strategic incentives. We ask
whether, under this benchmark, the planner can restore efficiency in environments where
learning is otherwise inefficient.

Rosenberg and Vieille [2017] show that for some tail-regular signals, the answer is
positive. In particular, under a uniform signal distribution, i.e., F (p) = p for all p ∈
[0, 1], they construct a sequence of cutoff strategies that achieves efficient learning and
show that these cutoffs differ significantly from those chosen by rational agents.9 More
generally, as shown in Arieli et al. [2025], learning is efficient for all tail-regular signals
if agents exhibit a mild form of misspecification—namely, mild condescension—under
which they slightly underestimate the precision of others’ signals relative to their own,
despite all signals having identical precision.10 The resulting cutoff rules used by these
behavioral agents therefore also deviate from those used by rational agents. We note
that a planner can replicate the behavior induced by such misspecification by instructing
agents to follow these cutoff rules. Consequently, for any tail-regular signal distribution,

9Proposition 6 of Rosenberg and Vieille [2017] shows that with these cutoffs, the probability that agent
t chooses the wrong action converges to zero exponentially in t. Up to a change in the constant, this is
the same rate of convergence as if all signals were public.
10That is, agents correctly observe their own signals which are α-tail-regular but incorrectly believe that
all others’ private signals are β-tail-regular. The condition for mild condescension requires β ∈ (α, α+1).
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these results imply that a planner who can dictate agents’ strategies can always restore
efficient learning.

4. Results

We now state our main result. In contrast to the benchmark, we show that once
agents’ strategic incentives are taken into account, even a powerful planner, who can
jointly design social information disclosure and transfers, cannot restore efficient learning
with a finite budget. Recall that in the baseline model (under full disclosure and no
transfers) learning is inefficient for tail-regular signals if and only if α ≥ 1.

Theorem 1. Suppose α ≥ 1. Then, for any information disclosure policy and any
transfer scheme, either learning is inefficient or the expected sum of absolute transfers is
infinite.

This result implies that efficient learning cannot be restored by any combination of
disclosure policy and transfer scheme with finite expected transfers. In particular, a
planner with a finite budget cannot restore efficiency. Compared to the first-best bench-
mark, Theorem 1 thus highlights agents’ strategic behavior as an important source of
inefficiency. An immediate consequence of Theorem 1 is the following.

Corollary 2. Suppose α ≥ 1 and the planner imposes no transfers. Then, for any
information disclosure policy, learning is inefficient.

This result shows that, using information disclosure alone, the planner cannot fine-tune
agents’ social information to overturn the incorrect herds quickly enough for learning to
become efficient. Note that this result does not imply that full disclosure is always
socially optimal. Indeed, limited disclosure can sometimes improve overall outcomes by
delaying herding and facilitating additional information aggregation, at the cost of a
higher mistake probability for some early agents.11 Nevertheless, our result shows that
such overall improvements are limited in that they cannot restore efficient learning.

The idea behind Theorem 1 is as follows. Because agents are strategic, a planner who
aims to accelerate learning for all agents faces a fundamental tradeoff in designing both
information disclosure and transfers. On the one hand, the planner must provide the
current agent with sufficiently precise social information to keep her mistake probability
low. On the other hand, he must extract enough information from the agent’s action to
11For example, consider a signal structure with four signals: for some small ε > 0, agents receive one of
two perfectly revealing signals (one for each state), each occurring with probability ε/2, and otherwise
receive a noisy signal that induces a posterior of 2/3 or 1/3 with equal probability. Under full disclosure,
all agents follow agent 1 unless a contradicting perfectly revealing signal arrives. If instead the planner
withholds agent 1’s action from agent 2, the first two agents act solely on their private signals, thereby
generating two conditionally independent observations rather than one. This reduces the probability that
an incorrect herd forms from 1/3 to 7/27, and consequently lowers the expected number of mistakes.
Although this signal distribution is not tail-regular, it can be approximated by a tail-regular distribution,
for which the same conclusion holds.
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generate more precise information for future agents. A similar tension arises with trans-
fers. Intuitively, to accelerate learning, the planner should subsidize contrarian actions
so that an incorrect herd can end quickly. However, once such actions are subsidized,
future agents who observe the herd action being taken despite these subsidies will infer
more from it, strengthening their incentive to follow the herd. As a result, the planner
must offer even larger transfers to future agents to offset this additional inference.

These tradeoffs arise precisely because rational agents optimally respond to social in-
formation and incentives. When an agent receives very precise social information, she
tends to ignore her private signal unless it is extremely strong, which occurs with small
probability. As a consequence, the more precise the social information is, the less informa-
tive the agent’s action becomes, undermining the planner’s ability to learn. Conversely,
when the planner provides imprecise social information, the agent relies more heavily
on her private signal, allowing the planner to learn from her action, but at the cost of
a higher mistake probability. Similarly, the planner could use transfers to further elicit
more information from agents’ actions, but doing so would require a large amount of
transfers.

In sum, we show that the aforementioned tensions are insurmountable: any interven-
tion—jointly designing information disclosure and transfers—that provides agents with
the appropriate incentives to achieve fast learning, necessarily either leaves the planner
with too little information to sustain precise social beliefs or requires consistently large
transfers whose expected total amount is infinite.

5. Analysis

In this section, we provide a detailed analysis of the dynamics of the planner’s belief
and its relationship to agents’ mistake probabilities. This will lead to a proof sketch for
Theorem 1 at the end of the section.

5.1. Planner’s Belief Dynamics. Recall that the planner’s belief that the state is high
at time t is πt = P[θ = h | a1, . . . , at−1], and that agent t’s private belief is qt = P[θ = h |
st]. Starting from πt, the planner chooses an information disclosure policy that induces
a social belief νt for agent t and offers a transfer τt(νt). After the planner’s intervention,
agent t chooses her action based on her posterior belief

pt = P[θ = h | qt, νt].

From (2.3), agent t chooses the high action if and only if

pt ≥ 1
2
(1− τt(νt)).

By Bayes’ rule, this condition can be written as

pt
1− pt

=
qt

1− qt
× νt

1− νt
≥ 1− τt(νt)

1 + τt(νt)
.
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We define agent t’s private-belief cutoff as

(5.1) c(νt, τt(νt)) =
(1− νt)(1− τt(νt))

νt(1 + τt(νt)) + (1− νt)(1− τt(νt))
.

It follows that agent t chooses the high action if her private belief satisfies

qt ≥ ct(νt, τt(νt)),

and chooses the low action otherwise. Since the transfer τt is determined by νt, for
brevity, we write the cutoff in (5.1) as ct(νt) = c(νt, τt(νt)). Therefore, conditional on θ,
the probability that agent t chooses the high action is 1−Fθ(ct(νt)), while the probability
that agent t chooses the low action is Fθ(ct(νt)). This implies that if agent t chooses the
high action, then the planner’s belief πt+1 evolves as

πt+1

1− πt+1

=
πt

1− πt

× 1− Fh(ct(νt))

1− Fℓ(ct(νt))
.(5.2)

If agent t chooses the low action, then πt+1 evolves as

πt+1

1− πt+1

=
πt

1− πt

× Fh(ct(νt))

Fℓ(ct(νt))
.(5.3)

The second terms in the above products capture the information conveyed by agent
t’s action to the planner’s belief. Since Fh first-order stochastically dominates Fℓ, the
likelihood ratio in (5.2) is always greater than one. Consequently, when the planner
observes a high action, his belief that the state is high increases. Likewise, the likelihood
ratio in (5.3) is always less than one, so observing a low action decreases the planner’s
belief that the state is high.

5.2. Agent’s Mistake Probability. Note that from (5.1), we have c(νt, 0) = 1− νt, so
1− νt is the private-belief cutoff used by agent t with induced social belief νt under zero
transfers. We first observe that any transfer can shift an agent’s private-belief cutoff by
at most its magnitude.

Lemma 1. For any t, any induced social belief νt and the associated transfer τt(νt), the
private-belief cutoff c(νt, τt(νt)) satisfies:

|c(νt, τt(νt))− (1− νt)| ≤ |τt(νt)|.

This lemma suggests that the planner cannot substantially shift agents’ cutoffs using
small monetary incentives. Next, for a given induced social belief and transfer, we com-
pare the mistake probabilities of an agent before and after receiving her private signal.
Intuitively, the former would perform worse than the latter since the latter has more
information. Nevertheless, we show that the private signal improves the mistake proba-
bility by at most a constant factor, which depends only on the private signal distribution.
We denote by bt the action chosen by agent t prior to receiving her private signal.
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Lemma 2. There exists a constant εF > 0 such that for any time t and any induced
social belief νt,

P[at ̸= θ | νt] ≥ εF · P[bt ̸= θ | νt].

The proof of Lemma 2 uses a simple idea: if an agent who relies only on social infor-
mation chooses the incorrect action, she will continue to do so after receiving any private
signal that reinforces the incorrect action, and those signals occur with constant proba-
bility. We will use this result to relate agents’ mistake probabilities to the rate at which
the planner’s belief can grow.

5.3. Expected Belief Growth. To analyze the growth of the planner’s belief, we exam-
ine the expected incremental changes in its log-likelihood ratio. As the planner observes
more actions from agents, his belief πt converges almost surely, since it is a bounded mar-
tingale. In other words, the planner becomes more certain about the state. We denote
the corresponding log-likelihood ratio at time t by

ℓt := log
πt

1− πt

.

Taking logarithms on both sides of (5.2) and (5.3), the evolution of the planner’s
log-likelihood ratio ℓt can now be written as

(5.4) ℓt+1 = ℓt + Ua
t (νt) if at = a ∈ {h, ℓ},

where we define

Uh
t (ν) := log

1− Fh(ct(ν))

1− Fℓ(ct(ν))
, and U ℓ

t (ν) := log
Fh(ct(ν))

Fℓ(ct(ν))
.

When Fh and Fℓ are tail-regular with exponent α, we can approximate Fh(q) and Fℓ(q)

for small q by qα+1 and qα, respectively, up to multiplicative constants (see Lemma 4 in
the appendix). As a result, Fh(q) is much smaller than Fℓ(q) when q is close to zero.
Thus, receiving a private signal below a small threshold q is much less likely in the high
state than in the low state, and so agents are much more likely to take the low action in
the low state than in the high state. In consequence, when agents hold a high induced
social belief, their private-belief cutoffs fall in this region. In that case, observing an agent
take the low action is highly informative for the planner, since it is largely unexpected,
whereas observing the high action conveys relatively little information.

More precisely, suppose agents have a large induced social belief ν, so that their private-
belief cutoff ct(ν) is close to zero. We show in Lemma 5 in the appendix that, for large
ν, the log-likelihood ratio increments Uh

t (ν) and U ℓ
t (ν) can be well approximated by

Uh
t (ν) ≈ (ct(ν))

α and U ℓ
t (ν) ≈ log(ct(ν)).

Hence, when ν is large, taking the high action is the likely outcome, so observing it
increases the planner’s belief by a small amount of (ct(ν))

α. In contrast, taking the
low action is unlikely, and observing it decreases the planner’s belief by a large amount,

12
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i.e., log(ct(ν)). This asymmetry in the planner’s belief updating is balanced by the
probabilities of these events, implying that belief updates are typically small, with large
updates occurring only rarely. As a result, although the planner’s belief converges almost
surely, its expected growth over time is gradual.

To quantify this gradual learning, we measure the strength of the planner’s belief by
the absolute log-likelihood ratio |ℓt|. In the following lemma, we establish an upper bound
on the incremental change in its expected value, which is crucial for proving our main
theorem. Recall that bt is the action that agent t would take without receiving her private
signal—that is, the action favored by social information alone, given the transfer.

Lemma 3. For any α ≥ 1, there exists some constant M < ∞ such that for any time t,

0 ≤ E[|ℓt+1| − |ℓt|] ≤ M · (P[bt ̸= θ] + E[|τt|]).

This result shows that, although the strength of the planner’s belief increases on aver-
age, learning cannot proceed too quickly: at any given time, the per-period growth of the
planner’s belief is bounded above, up to a constant, by the agent’s mistake probability
prior to receiving her private signal and the expected transfer.

The proof of Lemma 3 relies on the observation that, on average, the planner’s belief
evolves through a combination of frequent small updates and rare large updates. Intu-
itively, the planner learns the most about the state when agents act against the action
favored by their induced social beliefs. Such deviations arise either because the existing
social information points in the wrong direction, or because transfers shift the agent’s
private-belief cutoff away from that implied by social information. The former events are
rare since signals are tail-regular with α ≥ 1, while the latter cutoff shifts are bounded
by the size of the transfer (Lemma 1). Thus, their expected contribution to the planner’s
belief growth is bounded by the mistake probability under social information and the
expected transfer.

5.4. Proof Sketch of Theorem 1. We end this section by providing a proof sketch
of Theorem 1. Fix a tail-regular signal distribution with α ≥ 1. Suppose, toward a
contradiction, that there exist an information disclosure policy and a transfer scheme
that achieve efficient learning with a finite expected total transfer. Then the sum of
agents’ mistake probabilities, as well as the expected total transfers, must be finite. By
Lemma 2, the planner cannot do much worse than the agents, and therefore the sum
of the planner’s mistake probabilities is also finite. Meanwhile, Lemma 3 implies that,
for α ≥ 1, the expected strength of the planner’s belief is uniformly bounded over time.
This, in turn, implies that the planner’s mistake probability is bounded away from zero.
Since agents cannot outperform the planner by more than a constant factor, their mistake
probabilities are likewise bounded away from zero, a contradiction to efficient learning.
Therefore, we conclude that no information disclosure policy and transfer scheme can
restore efficient learning with a finite expected total transfer.

13
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6. Conclusions

In this paper, we show that a social planner cannot improve the efficiency of learning
with a finite budget, despite having flexible information design choices. This stands in
contrast to a benchmark setting in which efficient learning can always be achieved when
the planner is able to disregard agents’ incentives and directly dictate their strategies.
Our result thus underscores that inefficiency in social learning is not only a consequence of
informational constraints or coarseness of observed actions, but also arises fundamentally
from agents’ strategic behavior. When agents optimally respond to both social informa-
tion and incentives, we show that any attempt to accelerate learning either deprives the
planner of sufficiently informative actions to sustain precise social beliefs over time or
requires an infinite amount of expected transfers.

One promising direction for future research is to study the optimal design of policy
interventions in environments where efficient learning is feasible. In such settings, different
disclosure policies may all lead to eventual learning, yet differ substantially in the rate
at which learning occurs. Characterizing the disclosure policy that minimizes the total
expected number of mistakes is an open question. More broadly, the limits of information
disclosure as a tool for improving learning outcomes are not yet well understood. For
example, it remains open whether full disclosure can always be improved upon, or how
to characterize the class of disclosure policies that are optimal for a given private signal
distribution.

Our model can be extended in several directions. It is natural to consider an alternative
notion of efficient learning, based on the discounted expected number of incorrect choices∑

t≥1 δ
tP[at ̸= θ] for δ ∈ (0, 1). This criterion is always finite and therefore allows for a

finer comparison across interventions. We conjecture that a conclusion similar to our main
result continues to hold under this discounted notion of efficient learning, as discounting
seems to favor the full disclosure policy.12 Another direction is to expand the set of tools
available to the designer. For example, consider a designer who can directly compensate
agents for revealing their private signals (or, more generally, garblings of their signals)
rather than inferring the signals from actions. Such mechanisms would allow the planner
to extract more information without increasing the probability of incorrect choices, thus
alleviating a core tension in our model. A related positive effect of garbling agents’ private
signals has been shown in settings with bounded signals [Arieli et al., 2024]. Finally, an
interesting technical question is whether our results can be extended beyond tail-regular
signals. We leave these questions for future research.

12Intuitively, relative to full disclosure, coarser disclosure policies shift accuracy from early to later agents:
withholding information from early agents makes their actions more informative, allowing more precise
information to be revealed later on. This tends to reduce incorrect choices in later periods, but at the
expense of more mistakes early on. Because discounting places greater weight on earlier mistakes, the
discounted criterion should shift the comparison in favor of the full disclosure policy.
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Appendix A. Omitted Proofs from the Main text

Proof of Lemma 1. For ease of notation, we write τt = τt(νt), and so, agent t’s private-
belief cutoff is c(νt, τt). A straightforward calculation shows that

c(νt, τt)− (1− νt) =
(1− νt)− τt(1− νt)− (1− νt)[1− τt(1− 2νt)]

1− τt(1− 2νt)

=
(1− νt) [1− τt − 1 + τt − 2τtνt]

1− τt(1− 2νt)

= −τt ·
2νt(1− νt)

1− τt(1− 2νt)
.

Since νt ∈ [0, 1] and |τt| < 1, the denominator 1− τt(1− 2νt) is always positive. Thus,
it suffices to show that 2νt(1− νt) ≤ 1− τt(1− 2νt), which holds for any |τt| < 1. □

Proof of Lemma 2. Recall that qt is agent t’s belief conditional on the private signal, and
we use Ph and Pℓ to denote the conditional probabilities. Let

εF = min{Pℓ[qt ≥ 1/2],Ph[qt < 1/2]}.

Since the conditional CDFs Fh and Fℓ are continuous, it follows that εF > 0. For ease of
notation, let τt = τt(νt). By Bayes’ rule, bt = h if and only if

νt
1− νt

≥ 1− τt
1 + τt

.

Recall that the privately informed agent chooses at = h if and only if qt ≥ ct(νt), where,
by (5.1), the cutoff ct(νt) satisfies

ct(νt)

1− ct(νt)
=

1− τt
1 + τt

× 1− νt
νt

.

Now, suppose bt = h. This implies νt
1−νt

≥ 1−τt
1+τt

, and so we have

ct(νt) ≤ 1/2.

If θ = h, then the inequality holds trivially since P[bt ̸= θ] = 0. If θ = ℓ, then P[bt ̸= θ] =

1. However, for agent t who observes both qt and νt, she chooses at = h if qt ≥ ct(νt).
Since ct(νt) ≤ 1/2, we have

Pℓ[at = h | νt, τt] = Pℓ[qt ≥ ct(νt)] ≥ Pℓ[qt ≥ 1/2] ≥ εF .

Hence, Pℓ[at = h] ≥ εF · 1 = εF · Pℓ[bt ̸= θ]. The case where bt = ℓ follows from an
analogous argument. Combining all cases, we have established that for any νt and its
associated τt:

P[at ̸= θ | νt] ≥ εF · P[bt ̸= θ | νt].

□
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The following lemma connects the exponent α with the tail behavior of Fh and Fℓ. It
can be derived from a standard result (see, e.g., Hann-Caruthers et al. [2018], Rosenberg
and Vieille [2019] and Arieli et al. [2025]). We provide proofs below for completeness.

Lemma 4. Suppose F (q) = Θ(qα). Then Fℓ(q) = Θ(qα) and Fh(q) = Θ(qα+1).

Proof. Recall that F is the unconditional cdf, while Fℓ and Fh are the conditional cdfs
given θ = ℓ and θ = h. For any q, these conditional cdfs satisfy

(A.1)
Fh(q) = 2

(
qF (q)−

∫ q

0

F (x) dx
)
,

Fℓ(q) = 2
(
(1− q)F (q) +

∫ q

0

F (x) dx
)
.

Note that |Fℓ − 2F (q)| ≤ 3qF (q) and that limq→0 Fℓ(q)/F (q) = 2. So, if F (q) = Θ(qα),
then Fℓ(q) = Θ(qα).

If F (q) = Θ(qα), then there exist constants 0 < c ≤ C < ∞ such that for all small q,
cqα ≤ F (q) ≤ Cqα. As Fh(q) ≤ 2qF (q), this gives us the upper bound: Fh(q) ≤ 2Cqα+1.

For the lower bound, fix a small q and some m ∈ (0, 1). We can write the integral as∫ q

0

F (x) dx =

∫ mq

0

F (x) dx+

∫ q

mq

F (x) dx.

Since F is nondecreasing, we have F (x) ≤ F (mq) for x ≤ mq and F (x) ≤ F (q) for
x ∈ [mq, q]. Hence

∫ mq

0
F (x) dx ≤ mq F (mq), and

∫ q

mq
F (x) dx ≤ (1−m)q F (q). Adding

the two bounds and using the fact that F (mq) ≤ C(mq)α gives∫ q

0

F (x) dx ≤ Cmα+1qα+1 + (1−m)q F (q).

Using F (q) ≥ cqα, we have Cmα+1qα+1 ≤ Cmα+1

c
qF (q). Choose m small enough so

that Cmα+1

c
≤ m

2
. Then ∫ q

0

F (x) dx ≤
(
1− m

2

)
qF (q).

Plugging into (A.1) yields

Fh(q) ≥ 2
(
qF (q)−

(
1− m

2

)
qF (q)

)
= mqF (q) ≥ mc qα+1.

This provides the lower bound. Together with the upper bound, it follows that Fh(q) =

Θ(qα+1). □

The next lemma characterizes the asymptotic size of the log-likelihood increments
Uh
t (ν) and U ℓ

t (ν) in terms of the cutoff ct(ν), which will be useful in proving Theorem 1.
For notational convenience, we write µt = ct(ν) as the private-belief cutoff that agent t

uses to choose an action. We will use the Landau notation, o(·) and O(·), i.e., we write
f(x) = o(g(x)) if limx→0

f(x)
g(x)

= 0, and f(x) = O(g(x)) if lim supx→0
f(x)
g(x)

< ∞.
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Lemma 5. For µt close to 0, one has Uh
t (ν) = Θ(µα

t ) and U ℓ
t (ν) = log(µt) + O(1), that

is

0 < lim inf
µt→0

Uh
t (ν)

µα
t

≤ lim sup
µt→0

Uh
t (ν)

µα
t

< ∞,

and there exists a constant C > 0 such that for all sufficiently small µt,

|U ℓ
t (ν)− log(µt)| ≤ C.

Proof. Recall from (5.4) that

Uh
t (ν) = log

1− Fh(µt)

1− Fℓ(µt)
, and U ℓ

t (ν) = log
Fh(µt)

Fℓ(µt)
.

By the assumption of tail regularity and Lemma 4, there exist constants Ch ≥ ch > 0

and Cℓ ≥ cℓ > 0 such that for all sufficiently small µ, Fh(µ) ∈ [chµ
α+1, Chµ

α+1] and
Fℓ(µ) ∈ [cℓµ

α, Cℓµ
α]. Substituting these into the expression for U ℓ

t , we obtain

log
( ch
Cℓ

µt

)
≤ U ℓ

t (ν) ≤ log
(Ch

cℓ
µt

)
,

which implies
U ℓ
t (ν) = log(µt) +O(1).

From Lemma 4, we have Fh(µt) = Θ(µα+1
t ) and Fℓ(µt) = Θ(µα

t ), so Fh(µt) = o(Fℓ(µt)).
We rewrite Uh

t as

Uh
t (ν) = log

(
1− Fh(µt)

1− Fℓ(µt)

)
≤ − log(1− Fℓ(µt)).

Since Fℓ(µt) ≤ 2F (µt) from Lemma 4, we have Uh
t (ν) ≤ − log(1 − 2F (µt)). Using the

fact that for small x, − log(1− x) ≤ x+ x2, it follows that

Uh
t (ν) ≤ 2F (µt)(1 + 2F (µt)),

which establishes an upper bound. To obtain a lower bound, notice that since Fh(µt) ≤
2µtF (µt) and Fℓ(µt) ≥ 2(1− µt)F (µt), substituting these bounds into eU

h
t (ν) yields

eU
h
t (ν) =

1− Fh(µt)

1− Fℓ(µt)
≥ 1− 2µtF (µt)

1− 2(1− µt)F (µt)
.

Using that 1/(1− x) ≥ 1 + x+ x2 for x ∈ [0, 1) for the denominator,

eU
h
t (ν) ≥

(
1− 2µtF (µt)

)(
1 + 2(1− µt)F (µt) + (2(1− µt)F (µt))

2
)

= 1 + (2− 4µt)F (µt) + (4− 12µt + 8µ2
t )F (µt)

2 − (8µt − 16µ2
t + 8µ3

t )F (µt)
3

= 1 + 2F (µt)− 4µtF (µt) + 2(2−O(µt))F (µt)
2
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Applying the logarithm to both sides and using log(1 + x) ≥ x− x2

2
for small x, we have

Uh
t (ν) ≥ log

(
1 + 2F (µt)− 4µtF (µt) + (4−O(µt))F (µt)

2
)

≥ 2F (µt)− 4µtF (µt) + (2−O(µt))F (µt)
2 + o(F (µ)2)

≥ 2F (µt)
(
1− 2µt + (1−O(µt))F (µt) + o(F (µt))

)
As µt → 0, F (µt) → 0, the terms −2µt and (1 − O(µt))F (µt) both vanish. Hence,
the above upper and lower bounds imply that limµt→0

Uh
t (ν)

2F (µt)
= 1. By the tail regularity

assumption, we have F (µt) = Θ(µα
t ), and thus it follows that Uh

t (ν) = Θ(µα
t ). □

The next lemma establishes the monotonicity of the expected absolute log-likelihood
ratio and provides a decomposition of its increments, which will be useful in proving
Lemma 3.

Lemma 6. The sequence (E[|ℓt|])t≥0 is nondecreasing. Furthermore, the increments sat-
isfy

E[|ℓt+1|]− E[|ℓt|] = E[∆(πt, νt)],

where

∆(πt, νt) = f(πt, νt)
(
|ℓt + U ℓ

t (νt)| − |ℓt|
)
+
(
1− f(πt, νt)

)(
|ℓt + Uh

t (νt)| − |ℓt|
)
,

and f(πt, νt) = πtFh(ct(νt)) + (1− πt)Fℓ(ct(νt)).

Proof. Consider the function g(x) =
∣∣log x

1−x

∣∣. Since g is convex on (0, 1), Jensen’s
inequality implies

E[g(πt+1) | Ht] ≥ g(E[πt+1 | Ht]),

where Ht = (a1, . . . , at−1) is the history of actions available to the planner at time t.
Since (πt) is a martingale, we have E[πt+1 | Ht] = πt. Thus,

E[|ℓt+1| | Ht] = E[g(πt+1) | Ht] ≥ g(πt) = |ℓt|.

Taking the total expectations yields E[|ℓt+1|] ≥ E[|ℓt|].
To derive the decomposition, we condition on the planner’s belief πt and the induced

social belief νt. Note that the probability that agent t chooses the low action is

P[at = ℓ | πt, νt] = πtFh(ct(νt)) + (1− πt)Fℓ(ct(νt)) =: f(πt, νt).

The probability of agent t choosing the high action is thus 1 − f(πt, νt). By the law of
iterative expectations and the update rule for ℓt in (5.4), we have

E[|ℓt+1|] = E[E[|ℓt+1| | πt, νt]]

= E[f(πt, νt) · |ℓt + U ℓ
t (νt)|] + E[(1− f(πt, νt)) · |ℓt + Uh

t (νt)|].

Using the identity |ℓt| = f(πt, νt)|ℓt|+ (1− f(πt, νt))|ℓt|, we obtain

E[|ℓt+1|]− E[|ℓt|] = E
[
∆(πt, νt)

]
,

18



FLORIAN BRANDL, WANYING HUANG, AND ATULYA JAIN

where ∆(πt, νt) is defined as the conditional expected change in the absolute LLR:

∆(πt, νt) = f(πt, νt) · (|ℓt + U ℓ
t (νt)| − |ℓt|) + (1− f(πt, νt)) · (|ℓt + Uh

t (νt)| − |ℓt|).

This completes the proof. □

Proof of Lemma 3. Let bt be the action chosen by an agent with social belief νt receiving
transfer τt. To simplify notation, throughout the proof, C denotes a constant that may
change from line to line. To establish the desired upper bound on E[|ℓt+1|] − E[|ℓt|], by
Lemma 6, it suffices to show that for some M < ∞,

E
[
∆(πt, νt)

]
≤ M ·

(
P[bt ̸= θ] + E[|τt|]

)
.

To this end, observe first that by the triangle inequality, one has

(A.2) ∆(πt, νt) ≤ f(πt, νt) · |U ℓ
t (νt)|+ (1− f(πt, νt)) · |Uh

t (νt)|.

Fix some small ε ∈ (0, 1/4] and let µt = ct(νt). We consider two cases: (i) the tail region
where either µt ≤ ε or µt ≥ 1− ε and (ii) the middle region where µt ∈ (ε, 1− ε).

Case (i). Suppose µt ≤ ε. Conditioning on the social belief νt, since νt is a mean-
preserving contraction of πt, we have E[πt | νt] = νt. Thus, the conditional expectation
of f(πt, νt) is

E[f(πt, νt) | νt] = E[πt | νt] · Fh(µt) + (1− E[πt | νt]) · Fℓ(µt) = νtFh(µt) + (1− νt)Fℓ(µt).

By Lemma 5 and Lemma 4, when µt ≤ ε, we have |U ℓ
t (νt)| ≤ C · | log µt| and Fh(µt) =

Θ(µα+1
t ) and Fℓ(µt) = Θ(µα

t ). Using the inequality (1− νt) ≤ µt+ |τt| from Lemma 1, we
obtain

E[f(πt, νt) | νt] · |U ℓ
t (νt)| ≤ C

(
νtµ

α+1
t + (µt + |τt|)µα

t

)
| log µt|

≤ C
(
µα+1
t | log µt|+ |τt|µα

t | log µt|
)

≤ C(µt + |τt|),

where the last inequality follows since xα| log x| → 0 as x → 0, for any α > 0. By
Lemma 5, Uh

t (νt) ≤ Cµα
t , and since α ≥ 1, Uh

t (νt) ≤ Cµt and thus it follows from (A.2)
that

(A.3) E[∆(πt, νt)1(µt ≤ ε) | νt] ≤ C(µt + |τt|).

To relate µt to the mistake probability, recall from Lemma 1 that |µt − (1− νt)| ≤ |τt|.
If νt ≤ 1/2, the condition µt ≤ ε implies |τt| ≥ 1/2 − ε ≥ 1/4, so 1(νt ≤ 1/2) ≤ 4|τt|.
Note that we can write

1− νt ≤ min{νt, 1− νt}+ 1(νt ≤ 1/2),

and by the triangle inequality,

µt ≤ (1− νt) + |µt − (1− νt)| ≤ (1− νt) + |τt|.
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Thus,
µt ≤ min{νt, 1− νt}+ C|τt|.

It then follows from (A.3) that

E[∆(πt, νt) · 1(µt ≤ ε) | νt] ≤ C · (min{νt, 1− νt}+ |τt|).

Notice that min{νt, 1 − νt} equals the mistake probability for an agent with induced
social belief νt and zero transfer. Let b0t denote the action chosen by such an agent under
zero transfer. Then,

min{νt, 1− νt} = P[b0t ̸= θ | νt].

Since b0t is the Bayes-optimal action for an agent with belief νt, any non-zero transfer
τt that induces a different action bt ̸= b0t can only increase the mistake probability:
P[b0t ̸= θ | νt] ≤ P[bt ̸= θ | νt]. Hence,

(A.4) E[min{νt, 1− νt}] = P[b0t ̸= θ] ≤ P[bt ̸= θ].

Finally, combining the above observations and taking expectations yields

E[∆(πt, νt)1(µt ≤ ε)] ≤ C
(
P[bt ̸= θ] + E[|τt|]

)
.

The same bound holds for the right tail µt ≥ 1− ε by symmetry.
Case (ii). Consider the case µt ∈ (ε, 1− ε). In this region, µt is bounded away from 0

and 1, ensuring the updates |Uh
t | and |U ℓ

t | are bounded by a constant C. It follows from
(A.2) that ∆(πt, νt) ≤ C and thus

E[∆(πt, νt) · 1(µt ∈ (ε, 1− ε))] ≤ C · E[1(µt ∈ (ε, 1− ε))]

If µt ∈ (ε, 1−ε) and νt ≤ ε/2 (or νt ≥ 1−ε/2) then by Lemma 1, |τt| ≥ |µt−(1−νt)| ≥ ε/2.
Consequently, we can bound the indicator by

1(µt ∈ (ε, 1− ε)) ≤ 1(νt ∈ (ε/2, 1− ε/2)) + 1(|τt| ≥ ε/2)

≤ 2

ε
min{νt, 1− νt}+

2

ε
|τt|.

Substituting these back into the expectation, we thus obtain

E[∆(πt, νt) · 1(µt ∈ (ε, 1− ε))] ≤ C · E
[
2

ε
min{νt, 1− νt}+

2

ε
|τt|

]
≤ C · (P[bt ̸= θ] + E[|τt|]) ,

where the second inequality follows from (A.4). This concludes the proof of Lemma 3.
□

Proof of Theorem 1. Let axt be the action chosen by the planner based on his belief πt

at time t. Let a0t be the action chosen by the agent with private belief qt and induced
social belief νt under zero transfer. As before, bt is the action chosen by an agent with
induced social belief νt under transfer τt, and b0t is the action chosen by the same agent
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under zero transfer. To simplify notation, throughout the proof, C denotes a constant
that may change from line to line.

Recall that pt is the agent t’s posterior belief after combining her private belief qt with
her induced social belief νt. From the perspective of the agent, note that min{pt, 1− pt}
equals her mistake probability under zero transfer, that is, min{pt, 1−pt} = P[a0t ̸= θ | pt].
Since transfers can only increase the mistake probability relative to the Bayes-optimal
choice, we have

E[min{pt, 1− pt}] = P[a0t ̸= θ] ≤ P[at ̸= θ].

By Lemma 2 (with zero transfers), there exists εF such that for all t,

P[a0t ̸= θ] ≥ εF · P[b0t ̸= θ].

Furthermore, since the planner’s belief πt is more informative than agent t’s induced
social belief νt, one has P[b0t ̸= θ] ≥ P[axt ̸= θ]. Combining these yields

P[at ̸= θ] ≥ εF · P[axt ̸= θ].(A.5)

Suppose α ≥ 1 and by assumption we have F = Θ(qα). Assume, towards a contradic-
tion, that there exists a disclosure and transfer scheme such that learning is efficient and
the expected sum of absolute transfers is finite:

∞∑
t≥1

P[at ̸= θ] < ∞ and
∞∑
t≥1

E[|τt(νt)|] < ∞.

By Lemma 3, for α ≥ 1, the incremental growth of the expected absolute log-likelihood
ratio is bounded above by

E[|ℓt+1|]− E[|ℓt|] ≤ C · (P[bt ̸= θ] + E[|τt|])

≤ C · (P[at ̸= θ] + E[|τt|]) ,(A.6)

where the second inequality follows from Lemma 2. Summing (A.6) over all t, the hy-
pothesis implies that the sequence (E[|ℓt|])t≥1 is uniformly bounded:

lim
t→∞

E[|ℓt|] = E[|ℓ1|] +
∑
t≥1

(E[|ℓt+1|]− E[|ℓt|]) < ∞.

Notice that πt =
eℓt

eℓt+1
and thus the planner’s mistake probability is

P[axt ̸= θ] = E[min{πt, 1− πt}] = E
[ 1

e|ℓt| + 1

]
≥ 1

eE[|ℓt|] + 1
,

where the inequality follows from Jensen’s inequality. As E[|ℓt|] is bounded by some
constant L < ∞ for all t, it follows that

P[axt ̸= θ] ≥ 1

eL + 1
=: δ > 0.

By (A.5), this implies P[at ̸= θ] ≥ δ · εF > 0 for all t, which contradicts the assumption
that

∑
t P[at ̸= θ] < ∞. □
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