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Abstract

We study games with incomplete information and characterize when a feasible out-
come is Pareto efficient. Outcomes with excessive randomization are inefficient: gener-
ically, the total number of action profiles across states must be strictly less than the
sum of the number of players and the number of states. We consider three applications.
A cheap talk outcome is efficient only if pure; with state-independent sender payoffs,
it is efficient if and only if the sender’s most preferred action is induced with certainty.
In natural settings, Bayesian persuasion outcomes are inefficient across many priors.
Finally, ranking-based allocation mechanisms are inefficient under mild conditions.

1 Introduction
A central question in economics is how individual incentives interact with social welfare. A
natural benchmark for studying this relationship is Pareto efficiency—outcomes in which no
individual can be made strictly better off without making another worse off. However, in
many real-world settings, individuals make decisions under incomplete information, making
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it unclear when efficiency can be achieved. They face uncertainty about the underlying state
of the world and about what others know. Each holds private information that could, in
principle, improve everyone’s welfare, yet individual incentives often stand in the way of
efficiency. This tension raises two fundamental questions: When is a feasible outcome Pareto
efficient? When can strategic behavior lead to efficiency?

A complementary motivation comes from information design (see Bergemann and Mor-
ris, 2019). In environments with incomplete information, a designer decides how to disclose
information about the unknown state of the world. This information, together with the
players’ incentives, determines the resulting outcome—a mapping from states to distribu-
tions over action profiles—that fully determines the players’ payoffs. Understanding when
such outcomes are Pareto efficient is key to understanding the potential and the limits of
information design for improving social welfare.

The contribution of this paper is to provide a necessary condition for efficiency in finite
games with incomplete information. We derive a simple condition that depends only on
the number of action profiles taken across states. We then apply this result to equilibrium
outcomes in cheap talk, Bayesian persuasion, and an allocation problem without transfers,
showing that incentive constraints often prevent efficiency.

Our main result shows that excessive randomization over action profiles leads to ineffi-
ciency. Generically, an outcome is ex-ante efficient only if the total number of action profiles
played across all states is strictly less than the sum of the number of players and the number
of states (Theorem 1). Notably, this condition does not depend on the prior, the action
profiles used, or the weight of randomization. For instance, consider the case with two play-
ers. An outcome can be pure, quasi-pure—deterministic in all but one state with binary
randomization in that state—or mixed, meaning neither pure nor quasi-pure. Generically,
only pure or quasi-pure outcomes can be efficient.

This result builds on a link between ex-post and ex-ante efficiency that we establish
using convex geometry (Proposition 1). An outcome is ex-post efficient in a given state if
the state-contingent outcome maximizes some positive weighted sum of the players’ payoffs
in that state. By contrast, we show that an outcome is ex-ante efficient if and only if all
state-contingent outcomes maximize a common positive weighted sum of the players’ payoffs
across all states. Intuitively, ex-ante efficiency therefore requires a single set of welfare
weights to support all states simultaneously. Generically, when too many action profiles are
played across states, no such common positive weight exists.

We next illustrate how our results apply in three canonical settings.
First, we consider the cheap talk model, where the sender cannot commit to a signaling

policy. This lack of commitment imposes strict incentive constraints on the sender. We
show that, generically, a cheap talk outcome is efficient only if it is pure (Proposition 2).

2



Any stochastic equilibrium outcome requires the sender to be indifferent between multiple
actions in a given state. However, the receiver generically prefers one of these actions,
making the outcome inefficient. When the sender’s payoff is state-independent, a cheap talk
outcome is efficient if and only if the sender’s most preferred action is chosen with certainty
(Proposition 3). In this case, any equilibrium in which communication affects the receiver’s
action is inefficient.

Second, we examine the Bayesian persuasion model in a natural environment with one
safe action and several risky actions. There are as many states as actions, and in each state
a distinct action is optimal for the receiver. Meanwhile, the sender prefers any risky action
over the safe action. To increase the likelihood that some risky action is taken, the sender
seeks to shift the receiver’s beliefs toward states where a risky action is optimal. However,
to satisfy the receiver’s obedience constraint, the sender typically needs to randomize his
recommendations. Building on this observation, we show that for a wide range of priors and
preferences, the Bayesian persuasion outcome is necessarily mixed and therefore generically
results in inefficiency (Proposition 4 and 5).

Finally, our insights extend beyond two-player games. We illustrate this by applying our
results to the allocation problem studied by Niemeyer and Preusser (2024). The principal
allocates a good among many agents with peer information. Under mild assumptions, the
ranking-based mechanism assigns the good with positive probability to at least two players
in each state. This unavoidable randomization violates our bound on the number of actions
and generically implies inefficiency (Proposition 6).

Given its importance, a broad literature studies the conditions under which outcomes are
Pareto efficient. Early work examined the efficiency of Nash equilibria (Case, 1974; Dubey,
1986; Cohen, 1998) and conditions for implementing efficient outcomes under incomplete
information (Holmström and Myerson, 1983; Myerson, 1991, Ch. 10). Another line of
research studies efficiency from a learning perspective, developing adaptive procedures that
lead to efficient outcomes (Arieli and Babichenko, 2012; Pradelski and Young, 2012; Marden
et al., 2014; Jindani, 2022), while Arieli et al. (2017) examine commitment procedures that
can induce efficiency in extensive-form games. In a closely related paper, Rudov et al. (2025)
analyze when a Nash equilibrium can be improved upon by a correlated equilibrium, using
the convexity property of the set of correlated equilibria. Like us, they derive geometric
conditions that restrict the extent of randomization. However, their analysis focuses on
efficiency within the set of equilibria, whereas we study efficiency relative to the set of
all feasible outcomes. Closer to our setting with incomplete information, they show that,
generically, a Bayesian Nash equilibrium is an extreme point of the set of Bayes correlated
equilibria if and only if it is pure, whereas in our framework even a pure Bayesian Nash
equilibrium may fail to be efficient (Corollary 1).
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Our work also contributes to the literature on strategic communication. In cheap talk
(Crawford and Sobel, 1982), the sender’s message is unverifiable, while in Bayesian persuasion
(Kamenica and Gentzkow, 2011), the sender commits to how the message is generated.1 The
closest work within this literature is Ichihashi (2019), who analyzes how restrictions on the
sender’s information in Bayesian persuasion affect the equilibrium outcome. In particular,
he shows that the persuasion outcome is always efficient with binary actions, whereas our
results demonstrate that efficiency may fail when there are more than two actions. Rayo
and Segal (2010) study disclosure rules that maximize a weighted sum of sender and receiver
welfare. Doval and Smolin (2024) analyze a welfare function over a heterogeneous population
and characterize the Pareto frontier of outcomes achievable through information policies.

The remainder of the paper is organized as follows. Section 2 introduces the model and
our notion of efficiency. Section 3 presents our main result. Section 4 applies the result to
three economic environments: cheap talk, Bayesian persuasion, and an allocation problem
without transfers. Finally, Section 5 offers concluding remarks. All omitted results and
proofs are presented in the Appendix.

2 Model and Notion of Efficiency
We consider a finite game with incomplete information with k ≥ 2 players. The state of the
world is drawn from a finite set Ω according to a common prior p ∈ int(∆Ω). Each player
i ∈ {1, . . . , k} has a finite set of actions Ai, and we write A =

∏k
i=1 Ai for the set of pure

action profiles. Each player i has private information represented by a type ti ∈ Ti, where Ti

is finite. Let T = T1 × . . .×Tk denote the set of type profiles with distribution π : Ω → ∆T .
Each player i has a payoff function ui : Ω×A → R, and we assume the collection of payoffs
(u1, . . . , uk) is generic, meaning that the properties we establish hold for all bounded payoffs
except on a subset of Lebesgue measure zero.

An outcome is a mapping µ : Ω → ∆A, which assigns to each state ω ∈ Ω a probability
distribution µ(· | ω) over action profiles. Equivalently, one can think of a mediator who
observes the realized state and recommends an action (possibly at random) to the players,
which they follow. Crucially, the recommendation need not be incentive compatible; we
evaluate efficiency relative to the set of all feasible outcomes.

The payoff vector induced by outcome µ under prior p is

u(µ) :=
∑
ω∈Ω

p(ω)
∑
a∈A

µ(a | ω)
(
u1(ω, a), . . . , uk(ω, a)

)
. (1)

1There has been some work on selecting equilibria in cheap talk games that are Pareto dominant; see
Crawford and Sobel (1982) and Antić and Persico (2023). We study efficiency relative to all feasible payoffs,
not just equilibria.
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The set of feasible payoff vectors given prior p is defined as

Fp := {u ∈ Rk : u = u(µ), for some outcome µ : Ω → ∆A}. (2)

The set Fp is a convex polytope whose extreme points correspond to pure or deterministic
recommendations.

Definition 1. Given a compact convex set of feasible payoffs F ⊆ Rk, a vector u ∈ F is
efficient if there does not exist another feasible payoff vector v ∈ F such that v ≥ u, with a
strict inequality for at least one component.

In our setting, a feasible payoff vector is efficient if and only if it maximizes a strictly
positive weighted sum of the players’ payoffs.2 Moreover, we can identify the set of feasible
payoffs with the set of outcomes. Thus, we can analyze efficiency in terms of outcomes
instead of payoff vectors.

Definition 2. An outcome µ : Ω → ∆A is efficient if u(µ) is efficient with respect to Fp.

Given an outcome µ, we refer to µ(ω) ∈ ∆A and u(µ | ω) ∈ Rk as the state-contingent
outcome and state-contingent payoff vector, respectively. Let

Fω := Co
{
(u1(ω, a), . . . , uk(ω, a)) : a ∈ A

}
(3)

denote the feasible payoff vectors in state ω.3 Any outcome can be decomposed in terms of
its state-contingent outcomes. This follows as the set of the feasible payoff vectors given a
prior can be written as a unique Minkowski sum of the set of the feasible payoff vectors for
each state:4

Fp =
∑
ω∈Ω

p(ω)Fω. (4)

Our notion of efficiency is based on the ex-ante perspective, that is, before the state is
realized. However, efficiency can also be evaluated ex-post, once the state is realized. An
outcome µ is ex-post efficient in state ω if its induced outcome µ(ω) is efficient with respect
to the set of feasible payoff vectors in that state.5

2This equivalence fails for general set of feasible payoff vectors but can be approximated by “near”
weighted sum of the players’ payoffs, as shown in Che et al. (2024). In our case, the equivalence holds
because the set of feasible payoffs is a convex polytope.

3where Co(A) stands for the convex hull of set A.
4The Minkowski sum of two sets A and B is given by A+B = {a+ b | a ∈ A, b ∈ B}.
5There is not a unique way to define efficiency in environments with incomplete information. In particular,

Holmström and Myerson (1983) propose several notions of efficiency based on timing and feasibility. Our
notion corresponds to what they term ex-ante classically efficient, while ex-post efficiency corresponds to
their ex-post classically efficient.
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Definition 3. An outcome µ : Ω → ∆A is ex-post efficient in state ω if u(µ | ω) is
efficient with respect to Fω.

Efficiency implies ex-post efficiency but the converse does not hold. We establish a
geometric relationship between ex-ante and ex-post efficiency. An outcome is ex-post efficient
in a given state if it maximizes some strictly positive weighted sum of the players’ payoffs
in that state. The weights, however, may differ across states. In contrast, ex-ante efficiency
requires that the outcome maximize a common strictly positive weighted sum of the players’
payoffs across all states.

Proposition 1. An outcome µ is efficient if and only if there exists a positive weight n ∈ Rk
++

such that, for all ω ∈ Ω, the payoff u(µ | ω) maximizes the common positive linear functional
n⊤x over all x ∈ Fω.

We illustrate the notions of ex-ante and ex-post efficiency in the following example.

Example 1. Consider a game with two players: the sender and the receiver. The state space
is Ω = {ω0, ω1} and the receiver’s action space is A = {a0, a1, a2, a3, a4}. The sender’s and
the receiver’s payoffs are given by the following matrix:

a0 a1 a2 a3 a4
ω0 (2, 9) (10, 8) (0, 6.4) (3, 4) (1, 0)

ω1 (2, 0) (10, 4) (0, 6.4) (3, 8) (1, 9)

We analyze the efficiency of three pairs of outcomes and priors p = P(ω1):

(a) p = 0.10: an outcome where actions a0 and a1 are taken in ω0 and action a1 is taken
in ω1;

(b) p = 0.30: an outcome where action a1 is taken with certainty in both states;

(c) p = 0.70: an outcome where action a1 is taken in ω0, and actions a1 and a4 are taken
in ω1.

The feasible payoff vectors for states ω0, ω1, and the prior p are represented by the red,
blue, and orange regions in Figure 1, respectively. We find that for (a), the outcome is ex-post
efficient in both states but is not supported by a common positive normal. The unique normal
nω0 does not belong to the normal cone spanned by nω1 and nω1

, i.e., nω0 /∈ cone{nω1 , nω1
}.

For (b), the outcome is ex-post efficient in both states and supported by a common positive
normal, while for (c), the outcome is not ex-post efficient in state ω1. Overall, the outcome
is Pareto efficient in (b) but not in (a) or (c) (see the respective polytopes Fp in Figure 1).
As we will later see, these correspond to the equilibrium outcomes of Bayesian persuasion
for the respective priors.
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Figure 1: Each horizontal panel represents a different prior: (a) p = 0.10, (b) p = 0.30, and
(c) p = 0.70. Within each panel, the red region represents Fω0 , the blue region represents
Fω1 , and the orange region represents Fp. The black circled node denotes the outcome.
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3 Necessary Condition for Efficiency
Our main result provides a necessary condition for efficiency based on the number of action
profiles taken across states. Given an outcome µ and a state ω let |µ(ω)| denote the size of
the support of µ(ω) ⊆ A, namely the number of action profiles that are taken with positive
probability in that state.

Generically, efficiency requires that the total number of action profiles taken across all
states be strictly less than the sum of the number of players and states; excessive random-
ization therefore leads to inefficiency. Efficiency implies that the state-contingent outcomes
must maximize a common positive weighted sum of the players’ payoffs across all states.
When too many action profiles are taken across states, no such weight can exist generically.

Theorem 1. Generically, an outcome µ : Ω → ∆A is efficient only if∑
ω∈Ω

|µ(ω)| < k + |Ω|. (5)

Proof. An outcome µ is efficient if and only if it is ex-post efficient in every state and
supported by the same vector of strictly positive weights on players’ payoffs across all states.
Let a1, . . . , a|µ(ω)| denote the pure action profiles taken under outcome µ in state ω.

For µ to be ex-post efficient in state ω, there must exist a strictly positive weight vector
n ∈ Rk

++ such that the induced payoff vector u(µ | ω) maximizes n⊤u(ω, a) among all feasible
action profiles in that state. When the outcome mixes several action profiles a1, . . . , a|µ(ω)|,
ex-post efficiency requires that all of them yield the same weighted sum under n:

n⊤(u(ω, ai)− u(ω, a1)
)
= 0 for i = 2, . . . , |µ(ω)|. (6)

Generically, each additional action profile used introduces one additional independent
linear constraint on the set of admissible weights. Let Nω(µ) denote the outer normal
cone of the outcome µ in state ω, that is, the set of strictly positive vectors n ∈ Rk

++ for
which u(µ | ω) maximizes n⊤u(ω, a) over Fω. Thus, generically, this set has dimension
k − (|µ(ω)| − 1).

Efficiency requires that there exists a vector n that belongs to the outer normal cones of
all states. Generically, the dimension of the intersection of these cones is

dim
( ⋂

ω∈Ω

Nω(µ)
)
= k −

∑
ω∈Ω

(|µ(ω)| − 1) = k + |Ω| −
∑
ω∈Ω

|µ(ω)|. (7)

If
∑

ω∈Ω |µ(ω)| ≥ k + |Ω|, then this dimension is non-positive, implying that no common
strictly positive vector n can support all state-contingent outcomes.
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Remark 1. The aggregate bound implies a state-wise bound: |µ(ω)| ≤ k for all ω ∈ Ω.
Generically, an outcome is ex-post efficient in a state only if the number of action profiles
taken in that state is weakly less than the number of players.

Remark 2. For two-player games, outcomes can be pure (a deterministic action profile in
every state), quasi-pure (a deterministic action profile in all but one state, where two action
profiles are taken), or mixed (any other case). Generically, an outcome is efficient only if it
is pure or quasi-pure.

The necessary condition in Theorem 1 is far from sufficient. For instance, in Example 1,
the outcome is quasi-pure (satisfying the bound) in cases (a) and (c), yet it is still inefficient.
Even if all state-contingent outcomes are pure and ex-post efficient, the overall outcome can
still be inefficient. Efficiency is guaranteed when a player’s most preferred outcome that is
also ex-post efficient in every state is induced. In Example 1, this occurs when the sender
fully reveals the state and the receiver takes his optimal action in each state, or when the
sender’s preferred action is chosen in every state, as in case (b).

A complete characterization of efficiency is provided in Proposition 7 in the Appendix. It
offers a simple way to determine efficiency directly from the payoff functions. Although we
take an ex-ante view, efficiency can be assessed by examining payoff changes from deviations
in each state. An outcome is efficient if and only if no convex combination of these deviations
across states makes all players weakly better off and at least one strictly better off. In short,
no Pareto improvement is possible. Like Theorem 1, this condition is independent of both
the interior prior and the weights of randomization.

Type-contingent decision rules Following Bergemann and Morris (2019), outcomes can
be viewed as the result of type-contingent decision rules σ : T × Ω → ∆A, where action
profiles depend on both the type profile and the state. Since payoffs depend only on states
and the joint actions, the type profile and its distribution do not change the set of feasible
payoff vectors. Type profiles become relevant only when incentive compatibility constraints
are imposed.

A Bayes correlated equilibrium (BCE) is a type-contingent decision rule that satisfies the
players’ obedience constraints. A Bayesian Nash equilibrium (BNE) is a particular BCE in
which each player randomizes over actions as a function of his type (σi : Ti → ∆Ai). If the
distribution of type profiles π : Ω → ∆T has full support (assigns positive probability to
every type at every state), then even pure decision rules can induce mixed action profiles
across states.6

Corollary 1. Assume π : Ω → ∆T has full support. If either
6In a generic game, both the prior p and the type distribution π have full support.
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(i) σ : T × Ω → A and there are at least k states with types t, t′ ∈ T such that σ(t, ω) ̸=
σ(t′, ω), or

(ii) σi : Ti → Ai for all i = 1, . . . , k and at least q players use two or more actions across
their types where |Ω| (2q − 1) ≥ k,

then generically the induced outcome µ is inefficient.

The corollary shows that BCE or BNE outcomes may even fail to be efficient when players
follow pure decision rules. Differences in types impose distinct incentive constraints, which
can generate excessive randomization and lead to inefficiency. Rudov et al. (2025) show that
within the set of BCEs, a BNE is extreme if and only if it is pure. In contrast, we show
that efficiency may even fail for such pure rules when outcomes are evaluated relative to all
feasible payoffs rather than only the set of equilibrium payoffs.

4 Applications
We now illustrate how the general framework and result apply to three canonical economic
environments: cheap talk, Bayesian persuasion, and an allocation problem without transfers.

4.1 Cheap talk
We now consider the cheap talk model introduced in Crawford and Sobel (1982), which
studies strategic communication between an informed sender and an uninformed receiver.

The timing is as follows. First, the state ω ∈ Ω is drawn according to the common prior
p. The sender then observes the realized state and chooses a message m ∈ M to send. After
observing the message, the receiver chooses an action a ∈ A. This results in payoffs uS(ω, a)

and uR(ω, a) for the sender and the receiver, respectively.
The sender’s strategy is given by σ : Ω → ∆M , where M is a finite set of messages. We

assume there are at least as many messages as actions or states, i.e., |M | ≥ max{|A|, |Ω|}.
The receiver’s strategy is given by τ : M → ∆A. A strategy profile (σ, τ) induces an outcome
µ : Ω → ∆A, specifying a probability distribution over actions for each state, where

µ(a | ω) =
∑
m∈M

σ(m | ω)τ(a | m) for all ω ∈ Ω, a ∈ A. (8)

A strategy profile (σ, τ) is a Perfect Bayesian Equilibrium (PBE) if the sender chooses
messages that maximize his expected payoff in every state given the receiver’s strategy, the
receiver chooses actions that maximize his expected payoff given his posterior belief after
each message, and beliefs are updated according to Bayes’ rule wherever possible.
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Unlike Bayesian persuasion, cheap talk exhibits a multiplicity of equilibria. In particular,
a babbling equilibrium always exists, in which no communication takes place and the receiver
plays his best response to the prior.7

First, we show that, generically, a cheap talk outcome can be efficient only if it is pure.
This is a stronger result than the one stated in Theorem 1, as any stochastic outcome,
including quasi-pure, is inefficient.

Proposition 2. Generically, a cheap talk outcome µ : Ω → ∆A is efficient only if it is pure.

For any stochastic cheap talk outcome, the sender’s equilibrium condition requires him to
be indifferent between the actions that are played in a given state. For the outcome to be ex-
post efficient in that state, the receiver must also be indifferent between these actions. Hence,
efficiency of any stochastic cheap talk outcome necessarily relies on knife-edge indifferences
for both players. These break under generic payoffs, implying that only pure outcomes can
be efficient.

Recently, Kamenica and Lin (2025) show that, generically, if the sender’s preferred cheap
talk outcome is necessarily stochastic, then he values commitment. Hence, this cheap talk
outcome must be pure not only for efficiency but also for commitment to have no value.

Next, we consider the case where the sender’s payoff is state-independent. Lipnowski and
Ravid (2020) characterize the sender’s preferred equilibrium using a belief-based approach.
Define the receiver’s best responses given his belief p ∈ ∆Ω as A∗(p) := arg maxa∈A Ep[uR(ω, a)].
The sender’s value function

V (p) := max
a∈A∗(p)

Ep[uS(ω, a)], (9)

represents the sender’s expected payoff when the receiver, with belief p, selects the
sender’s preferred best response. They show that the sender’s preferred equilibrium cor-
responds to the quasiconcave envelope of the value function, evaluated at the prior, which
we denote by Quasicav V . We graphically illustrate this equilibrium for Example 1 in Fig-
ure 2.

Let A∗ :=
⋃

p∈∆Ω A∗(p) denote the set of actions that are a best response for the receiver
under some belief, and let a∗ := arg maxa∈A∗ uS(a) denote the sender’s most preferred action
in A∗. To rule out non-generic cases, we assume that the sender’s payoffs are distinct across
actions, i.e., uS(a) ̸= uS(b) whenever a ̸= b.

We now show that when the sender’s payoff is state-independent, a cheap talk outcome
is efficient if and only if the sender’s most preferred action is induced with certainty.

7Note that in the case of cheap talk, we cannot restrict attention to direct signaling policies, as some
equilibria may require randomizing between actions for a given message.
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Figure 2: Cheap talk: The value function (blue solid) and its quasiconcave envelope (red
dotted). Vertical lines show the jumps at cutoff beliefs.

Proposition 3. For a sender with state-independent payoff, a cheap talk outcome is efficient
if and only if the sender’s most preferred action a∗ is induced with certainty.

Any informative equilibrium requires the sender to be indifferent between the messages
he sends. For this to hold, the receiver must mix between at least two actions in response to
one of the messages. But then there exists a state in which both players strictly prefer the
sender’s most preferred action. Hence, any informative equilibrium fails to be efficient, as a
deviation to this pure action would make both strictly better off in that state. A babbling
equilibrium is efficient if and only if the sender’s most preferred action is induced. If a∗ is not
induced, we can again find a state in which both players strictly prefer this action, implying
inefficiency.

Consider the informative equilibrium in Example 1 given prior p = 0.5. The equilibrium
induces two posterior beliefs, q = 0.4 and q = 0.6 (see Figure 2). At belief q = 0.4, the
receiver mixes between actions a1 and a2 to make the sender indifferent. However, both
players prefer a∗ = a1 to a2 in state ω0, so the cheap talk outcome is not ex-post efficient
in that state. Similarly, consider the babbling equilibrium given prior p = 0.7. Again, both
players prefer a∗ = a1 to the induced action a3 in state ω0, implying inefficiency. In contrast,
the babbling equilibrium given prior p = 0.3 is efficient, as sender’s most preferred action
a∗ = a1 is induced.

Therefore, with state-independent sender payoffs, only the babbling equilibrium in which
the receiver plays the sender’s preferred action a∗ is efficient. The same action would be
taken even without communication, and the resulting outcome would be efficient. Thus, any
non-trivial equilibrium in which communication influences the outcome necessarily leads to
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inefficiency.

4.2 Bayesian persuasion
We now turn to Bayesian persuasion (Kamenica and Gentzkow, 2011), another model of
strategic communication between a sender and a receiver. Unlike in cheap talk, the sender
can commit to how messages are generated before the state is realized.

The timing is as follows. First, the sender chooses a message space M and a signaling
policy σ : Ω → ∆M before the state is realized. Then, the state ω ∈ Ω is drawn according
to the common prior p, and the message m ∈ M is sent according to the sender’s policy.
Upon observing the message, the receiver chooses an action a ∈ A. This results in payoffs
uS(ω, a) and uR(ω, a) for the sender and the receiver, respectively.

The sender’s objective is to choose a signaling policy that maximizes his ex-ante expected
payoff by influencing the receiver’s action. As is standard, ties are broken in favor of the
sender. Without loss, we restrict attention to direct signaling policies µ : Ω → ∆A, where
messages correspond to action recommendations. Given prior p, let µ∗

p denote the equilibrium
outcome of Bayesian persuasion.8

Definition 4. The Bayesian persuasion (BP) outcome µ∗
p : Ω → ∆A solves

max
µ:Ω→∆A

∑
ω∈Ω

p(ω)
∑
a∈A

µ(a | ω)uS(ω, a) (10)

subject to ∑
ω∈Ω

p(ω)µ(a | ω)
(
uR(ω, a)− uR(ω, b)

)
≥ 0 ∀a, b ∈ A. (11)

Equation (11) corresponds to the receiver’s obedience condition: given a recommended
action a, the receiver prefers following it to deviating to any other action b.

In Kamenica and Gentzkow (2011), the BP outcome is characterized using the concavi-
fication approach (Aumann and Maschler, 1995). Let Cav V : ∆Ω → R denote the concave
envelope of the value function V . The sender’s expected payoff in the equilibrium outcome
is given by the evaluation of the concave envelope at the prior: Eµ∗

p
[uS(ω, a)] = Cav V (p).

The value function and its concave envelope for Example 1 are depicted in Figure 3.
The outcomes in Example 1 correspond precisely to the BP outcomes for the respective
priors: (a) p = 0.10, (b) p = 0.30, and (c) p = 0.70. As seen in Figure 1, the BP outcome
is efficient for case (b), not for cases (a) or (c). Moreover, within each convex region of
the concave envelope, the BP outcome µ∗

p has the same support—and therefore the same
8Generically, the equilibrium outcome in Bayesian persuasion is unique.
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Figure 3: Bayesian persuasion: The value function (blue solid) and its concave envelope (red
dotted).

number of actions—across all priors in that region. Hence, the BP outcome µ∗
p is efficient

for p ∈ [0.2, 0.4] and inefficient for p ∈ (0, 0.2) ∪ (0.4, 1).

Threshold environment with safe and risky actions We study a natural environment
in which the Bayesian persuasion outcome fails our necessary condition for efficiency across
a wide range of priors and preferences.

The setting features one safe action and several risky actions, with as many states as
actions. Each action corresponds to a particular state, and the receiver wants to take the
matching action when he believes that state is sufficiently likely. A mismatched risky action
pays less than the safe action, so the receiver defaults to the safe option when he is unsure
about the state. By contrast, the sender prefers any risky action to the safe one, which is
his least-preferred outcome. A natural example is a seller–buyer interaction in which the
buyer (receiver) purchases a product only when sufficiently convinced it is the best choice,
and otherwise prefers not to buy any product. Meanwhile, the seller (sender) prefers that
some product be bought rather than none.

The action set is A = {a0, a1, . . . , an}, where a0 is the safe action and ai for i = 1, . . . , n

are risky actions. The state space is Ω = {ω0, ω1, . . . , ωn}, where ωi is the state in which
action ai is optimal for the receiver for all i. The sender’s payoff is state-independent: he
gets uS(ai) > 0 for any risky action ai with i = 1, . . . , n, and uS(a0) = 0 for the safe action.
We assume the prior p ∈ int(∆Ω) lies in the region where the sender’s least preferred action
a0 is optimal. The receiver prefers the action that matches the state and is worse off when
taking a mismatched risky action. We capture this by describing, for each action, the set of
beliefs under which it is optimal.

14



Let Ci ⊆ ∆Ω denote the convex subset of the beliefs where the receiver’s optimal action
is ai.

Ci := {p ∈ ∆Ω : Ep[uR(ω, ai)] ≥ Ep[uR(ω, aj)] ∀aj ∈ A}. (12)

The sets P = {C0, C1, . . . , Cn} form a partition of the belief space ∆Ω. We assume:

1. For each i = 0, . . . , n, the state ωi ∈ Ci and there exists an open neighborhood Nωi
⊂ Ci

containing ωi.

2. For any distinct indices i ̸= j with i, j ̸= 0, we have Ci ∩ Cj = ∅.

Condition 1 ensures that it is optimal to take action ai when the receiver is sufficiently
confident that the state is ωi. Condition 2 ensures that when the receiver is unsure which
risky action is optimal, he prefers the safe action.

To characterize the BP outcome µ∗
p, we follow Lipnowski and Mathevet (2017) and restrict

the feasible posteriors to the finite set of outer points Out(P), defined as

Out(P) :={p ∈ ∆Ω : p ∈ ext(Ci) whenever p ∈ Ci ∈ P}, (13)

=
( n⋃
i=0

ωi

)
∪
( n⋃
i=1

⋃
j ̸=i

oij
)
, (14)

where oij is the unique extreme point of the convex set Ci that lies on the line segment
joining vertices ωi and ωj.9 Lipnowski and Mathevet (2017) show that the BP outcome can
always be supported using the set of posterior beliefs Out(P). Furthermore, they show that
only an affinely independent subset of posteriors is needed, so one can restrict attention to
signaling policies that induce at most n+ 1 beliefs.

C1

C2

ω0 ω1

ω2

o21

o12

o20

o10

R∗

H0

H2

H1

p

Figure 4: The set R∗ (orange region) for n = 2.
9As we break ties in favor of the sender, if the belief oij is induced, the receiver takes action ai, since

uS(ai) > uS(a0).
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Suppose n = 2 and the prior p ∈ int(R∗) is as shown in Figure 4. Any feasible signaling
policy whose induced posteriors lie on the outer points—while satisfying Bayes plausibility—
induces all three actions. In the BP outcome, the posterior ω0 is induced while ω1 and ω2 are
not, since inducing these posteriors would lead the receiver to choose the safe action a0 with
high probability. To increase the likelihood of a risky action (a1 or a2), the sender therefore
assigns positive weight to non-degenerate beliefs such as o10, o12, o20, or o21. Hence, the BP
outcome is necessarily mixed—either all three actions occur in ω0, or both a1 and a2 are
played in ω1 and ω2—and thus generically inefficient by Theorem 1.

This intuition extends naturally to settings with n > 2 risky actions. For any two distinct
risky actions, there exists a convex region of priors where the BP outcome mixes between
taking some risky action and the safe action. The union of these regions, denoted R∗, forms
a full-dimensional set of priors for which the outcome is mixed and therefore generically
inefficient.

Proposition 4. For n ≥ 2, there exists a set R∗ ⊆ C0, with dim(R∗) = dim(∆Ω), such that,
generically, the BP outcome is inefficient for all p ∈ int(R∗).

The previous proposition established inefficiency for a range of priors under fixed pref-
erences. We now fix the prior and vary the receiver’s preferences. Specifically, we consider
partitions induced by threshold-based decision rules and show that, for sufficiently high
thresholds, the BP outcome must be mixed.

Consider a receiver who takes risky action ai only when he is sufficiently confident about
the state, that is, when his belief over the state ωi is greater than some threshold T > 0.5.10

Now, the convex subset Ci, where the receiver’s optimal action is ai, is given by:

Ci = {p ∈ ∆Ω | p(ωi) ≥ T} for all i = 1, . . . , n, (15)

C0 = ∆Ω \
n⋃

i=1

Ci. (16)

Let PT = {C0, . . . , Cn} denote the partition induced by threshold T .
To build intuition, consider n = 2 and a prior p ∈ int(∆Ω). As T increases, the regions

C1 and C2 shrink, and the prior eventually lies in a region where any feasible signaling policy
must induce all three actions a0, a1 and a2. By the previous arguments, for any such prior,
the Bayesian persuasion outcome must be mixed.

The same logic extends to any n > 2: for each prior, there exists a bound Tp < 1 such
that whenever T > Tp, the BP outcome becomes mixed and therefore inefficient.

10A similar class of preferences is considered in Aybas and Turkel (2024).
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Proposition 5. For n ≥ 2 and any prior p ∈ int(∆Ω), there exists a threshold Tp < 1

such that, generically, the BP outcome is inefficient with respect to the partition PT for all
T > Tp.

Together, these results show that Bayesian persuasion outcomes are inefficient across a
wide range of priors and preferences.

4.3 Allocation problem without transfers
We now turn to a mechanism design problem without transfers, studied by Niemeyer and
Preusser (2024). A principal needs to allocate a good among agents with correlated types.
This setting fits naturally within our framework of finite games with incomplete information.

A single indivisible good must be allocated among k players: one principal and k − 1

agents, where k ≥ 3. The state is ω = (ω1, . . . , ωk−1) ∈ Ω =
∏k−1

i=1 Ωi, and agent i’s
private type is ωi ∈ Ωi with |Ωi| ≥ 2. If agent i receives the good, his payoff is 1, and 0

otherwise. The principal’s payoff from allocating to agent i in state ω is ui(ω) ∈ [−1, 1],
while keeping the good yields 0. Let p ∈ int(∆Ω) denote the common prior over states, and
A = {a0, a1, . . . , ak−1} the set of actions, where a0 denotes the principal keeping the good
and ai denotes allocating it to agent i.

A (direct) mechanism is a mapping µ : Ω → ∆A, where µ(a | ω) is the probability
that action a is taken when the state is ω. Dominant-strategy incentive compatibility (DIC)
requires that truthful reporting maximizes each agent’s allocation probability:

µ(ai | ωi, ω−i) ≥ µ(ai | ω′
i, ω−i), ∀ωi, ω

′
i ∈ Ωi, ∀ω−i ∈ Ω−i, ∀i ∈ {1, . . . , k − 1}. (17)

The principal’s goal is to find the optimal mechanism: the DIC mechanism that maxi-
mizes his expected payoff. Because the objective is linear and the set of DIC mechanisms
is convex, any optimal mechanism is a convex combination of extreme DIC mechanisms.
When the state space is sufficiently rich, Niemeyer and Preusser (2024) show that almost
all extreme mechanisms are stochastic, making randomization a natural property of opti-
mal mechanisms in this environment. Although not the principal’s objective, examining the
welfare properties of the outcome helps determine when optimality is at odds with efficiency.

Ranking-based mechanism Because optimal mechanisms lack closed-form descriptions,
Niemeyer and Preusser (2024) introduce ranking-based mechanisms, which are simple yet
approximately optimal.

These mechanisms work in two steps. First, fix a threshold t ∈ (0, 1] and let ri(ω) denote
agent i’s rank at state ω according to peer value ui(ω−i) := E[ui | ω−i]. The principal
randomly selects one of the agents ranked among the top t(k − 1) agents. Second, the
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principal allocates the good to the selected agent if and only if his robust rank r∗i (ω−i) =

maxωi∈Ωi
ri(ωi, ω−i) also lies within the top t(k − 1) and his peer value is non-negative. If

the selected agent fails this test, the good is kept by the principal. Thus, each eligible agent
is assigned the good with a probability of at most 1/(t(k − 1)), and any leftover probability
mass is kept by the principal.

A crucial factor for the performance of ranking-based mechanisms is the impact that any
individual agent’s report has on his own rank, which they refer to as the informational size.
For each state ω, the informational size is defined as

δ(ω) := max
i∈{1,...,k−1}

max
ω′
i∈Ωi

∣∣ri(ωi, ω−i)− ri(ω
′
i, ω−i)

∣∣. (18)

When informational size is large, many agents can manipulate their position above the
threshold, and the mechanism may erroneously withhold the good. When it is small, no single
agent can substantially affect rankings. This assumption is natural in large environments
with many agents, where each individual’s type has only limited influence.

Ranking-based mechanisms are approximately optimal when informational size is small.
We impose a mild regularity condition: the threshold t is chosen sufficiently large—relative
to the informational size—so that, in every state, there are at least two eligible agents and
the principal allocates the good to at least one agent if selected. Under these assumptions,
we show that, generically, ranking-based mechanisms are inefficient.

Proposition 6. Suppose that for every state ω, the threshold t satisfies t ≥ max
{

1
k−1

+

δ(ω), 2
k−1

}
, and that there exists at least one agent i with non-negative peer value ui(ω−i) ≥ 0.

Then, generically, the ranking-based mechanism is inefficient.

The principal randomizes over at least two agents. Given the assumption on the thresh-
old, either two agents or one agent and the principal are allotted the good with positive
probability in each state. Summing over all states then violates the bound in Theorem 1,
implying that, generically, the outcome induced by the ranking-based mechanism is ineffi-
cient.

5 Conclusion
This paper analyzed Pareto efficiency in games with incomplete information. We identified
necessary conditions based on the number of action profiles taken across states—independent
of the prior, the action profiles used, and the weight of randomization. We found that, generi-
cally, any stochastic cheap talk outcome is inefficient, and that when the sender’s preferences
are state-independent, it is efficient if and only if the sender’s preferred action is chosen with
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certainty. Similarly, we show that, generically, Bayesian persuasion outcomes are inefficient
for a broad set of priors and preferences. These findings highlight that preference mis-
alignment prevents efficiency in direct communication between the sender and the receiver.
Beyond two-player games, our results extend to an allocation problem without transfers,
where ranking-based mechanisms rely on unavoidable randomization that generically leads
to inefficiency.

Several directions for future research remain open. A key challenge is to identify sufficient
conditions under which persuasion outcomes can be efficient. Moreover, alternative economic
models—such as mediation or delegation—warrant further study. A central question is
whether any communication protocol can guarantee efficiency under incomplete information.
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A Appendix

A.1 Proof of Proposition 1
For a convex polytope F ⊆ Rk and for any vector n ∈ Rk, let

S(F ;n) := {x ∈ F | n⊤x = max
y∈F

n⊤y} (19)

denote the set of maximizers x of the inner product n⊤x over F .
The characterization relies on the following relation for the Minkowski sum of convex

compact sets, as shown by Fukuda (2004):

S(F1 + . . .+ Fk;n) = S(F1;n) + . . .+ S(Fk;n) for any n ∈ Rk (20)

where, Fi is a compact convex set for all i = 1, . . . , k and F1 + F2 denotes the Minkowski
sum of the sets F1 and F2.

Each point in the Pareto frontier of the set Fp maximizes some strictly positive linear
functional n⊤x over Fp. Given Fp =

∑
ω p(ω)Fω, and using Equation (20), the payoff vector

u(µ) lies on the Pareto frontier of Fp if and only if, for all ω ∈ Ω, the payoff vector u(µ |
ω) lies on the Pareto frontier of Fω and there exists a common strictly positive vector n

that is maximized. Ex-post efficiency ensures that the outcome maximizes a positive linear
functional over the feasible payoff set for each state but does not ensure the existence of a
common strictly positive functional.
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A.2 Efficiency via payoff deviations
In the following proposition, we provide a necessary and sufficient condition for an outcome
to be efficient. This condition is determined solely by the payoff functions of the players. To
check for efficiency, one must look at the possible change in pair of payoffs when deviating
from the recommended action for all possible states. Define

dµ(ω, a) :=
(
u1(ω, a)− u1(ω, µ(ω)), . . . , uk(ω, a)− uk(ω, µ(ω))

)
(21)

as the deviation in state ω when action profile a is taken instead of the recommended profile
µ(ω) ∈ ∆A. Let

Dµ = {d̃ ∈ Rk : d̃ = dµ(ω, a) for some ω ∈ Ω, a ∈ A} (22)

denote the set of all deviations given outcome µ. And, let

cone(Dµ) :=
{ ∑

d∈Dµ

λd d : λd ≥ 0 for all d ∈ Dµ

}
. (23)

denote the cone generated by the set of deviations Dµ. An outcome is efficient if and only if
no convex combination of deviations across states leads to a Pareto improvement.

Proposition 7. An outcome µ : Ω → ∆A is efficient if and only if

cone(Dµ) ∩ Rk
+ = {0}. (24)

Proof. (⇒) We prove by contradiction. If µ is efficient, then there exists n ∈ Rk
++ such that

n⊤d ≤ 0 for all d ∈ Dµ. Suppose instead that (24) does not hold. Then there exist non-
negative coefficients (λd)d∈Dµ with dλ =

∑
d∈Dµ

λdd ∈ Rk
+ \ {0}. In particular, as n ∈ Rk

++,
this implies that n⊤dλ > 0. But n⊤dλ =

∑
d∈Dµ

λd(n
⊤d), so there exists some d ∈ Dµ with

λd > 0 for which n⊤d > 0, leading to a contradiction.
(⇐) Assume (24) holds, i.e., no strictly positive vector lies in the cone generated by

the deviations. Let A denote the k × |Dµ| matrix whose columns are the deviation vectors
dµ(ω, a). By Mangasarian’s Theorem, as stated in Perng (2017), for any real matrix A

exactly one of the following holds:

(i) There exists x ≥ 0, x ̸= 0 such that Ax ≥ 0 (with at least one strictly positive
component).

(ii) There exists n > 0 (strictly positive component wise) such that n⊤A ≤ 0.
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Since case (i) is ruled out by Equation (24), case (ii) must hold. Thus, there exists n ∈ Rk
++

such that n⊤d ≤ 0 for all d ∈ Dµ.
Fix any state ω and action a ∈ A. Then n⊤dµ(ω, a) = n⊤(u(ω, a)− u(µ | ω)) ≤ 0. This

implies u(µ | ω) ∈ S(Fω;n). Hence µ is ex-post efficient in every state, and the same strictly
positive n suffices for all states. Thus, the outcome µ is efficient.

Remark 3. For two players, the condition reduces to the following. There is no deviation
with dµ(ω, a) ≥ 0 (strict in at least one component), and for any pair of deviations (d1, d2)

where d1 benefits player 1 and d2 benefits player 2, the internal angle between d1 and d2 is
at most 180◦. Equivalently, d⊤2 d

†
1 ≥ 0, where d†1 denotes the vector obtained by rotating d1

clockwise by 90◦. In particular, if d1 = (x,−y) with x, y ≥ 0, then d†1 = (−y,−x).

The efficiency condition depends solely on the support of the outcome and is independent
of the weight of randomization and the prior. This has two implications. First, if an outcome
is efficient (or inefficient) for a prior p ∈ int(∆Ω), it remains so for all interior priors. Second,
the support of the Bayesian persuasion outcome, for each state, remains fixed within a convex
region, with only the weight of randomization varying. Thus, if the Bayesian persuasion
outcome is efficient (or inefficient) for a given prior, it holds across all interior priors in that
convex region.

A.3 Proof of Proposition 2
We prove by contradiction. Suppose there exists an efficient cheap talk outcome that is not
pure.

First, consider the case where the signaling policy is necessarily stochastic. So, there
exists ω∗ ∈ Ω and messages m1,m2 ∈ M such that σ(m1 | ω∗) · σ(m2 | ω∗) > 0. Note that
τ(m1) ̸= τ(m2), since otherwise the same outcome could be induced using a single message.
By Theorem 1, if more than two actions are played in a given state then the outcome is
inefficient for a generic set of payoffs. Therefore, assume exactly two actions, a1 and a2, are
played with positive probability. The sender’s equilibrium condition implies that

uS(ω
∗, a1) = uS(ω

∗, a2). (25)

For the outcome to be ω∗-efficient, the receiver must also be indifferent:

uR(ω
∗, a1) = uR(ω

∗, a2). (26)

If this indifference did not hold, then deviating to a pure action would strictly improve
the receiver’s payoff in the state ω∗. Consider any perturbation of payoffs that preserves
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the sender’s indifference, so the outcome remains an equilibrium. For any such generic
perturbation, the receiver’s indifference conditions hold only on a subset of payoff vectors
with Lebesgue measure zero, and thus represent a non-generic condition. For example, if
A = {a1, a2}, both indifference conditions imply that the state ω∗ is payoff-irrelevant.

Second, consider the case where the signaling policy is pure. As the outcome is stochastic,
this implies that the receiver’s response to some message m is mixed. This implies that the
receiver has multiple best responses at the posterior belief qm. Again, to ensure efficiency,
assume exactly two actions a1 and a2 are played with positive probability and the sender is
indifferent between them. Otherwise, deviating to a pure action would strictly improve the
sender’s payoff without reducing the receiver’s. This implies that

Eqm [uS(ω, a1)] = Eqm [uS(ω, a2)], Eqm [uR(ω, a1)] = Eqm [uR(ω, a2)]. (27)

As before, this corresponds to a non-generic condition. So, the cheap talk outcome is
inefficient with respect to the prior qm under all generic perturbations. This implies that
there exists a deviation dµ(ω, a) in some state ω ∈ supp(qm) and action a that violates
the efficiency condition of Proposition 7. First, since supp(qm) ⊆ supp(p), this deviation
is also feasible under the prior p. Second, condition (ii) in Proposition 7 imposes stronger
restrictions under prior p as the set of possible deviations is larger. Hence, generically, the
outcome is inefficient with respect to Fp.

A.4 Proof of Proposition 3
(⇒) Following Sobel (2013), we say an equilibrium is influential if the receiver does not always
take the same action. First, we show that any influential equilibrium is inefficient. Then, we
show that any non-influential equilibrium that does not induce the sender’s preferred action
with certainty is inefficient.

Assume that the equilibrium is influential, that is, τ(m) ∈ ∆A is not constant on the
equilibrium path. For this to happen, at least two messages are sent with positive probability,
resulting in different actions. First, observe that at least one message must induce a non-
degenerate posterior belief q ∈ ∆Ω.11 This is due to the sender’s equilibrium condition as he
must be indifferent between sending messages that result in the same expected payoff. And as
we assume the sender’s payoff is state-independent and each action leads to a different payoff,
some randomization is necessary for the indifference condition to hold. Such a randomization
can only occur at a non-degenerate belief where the receiver has multiple best response

11A non-degenerate belief refers to a belief where the probability distribution assigns positive probability
to more than one state.
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actions, that is, |A∗(q)| > 1.12 So, there must be at least two distinct actions a1 and a2 that
are played with positive probability when the posterior belief q is induced. For example,
consider the influential equilibrium for prior p = 0.5 in Figure 2, where the posterior beliefs
q = 0.4 and q = 0.6 are induced. Given the non-degenerate posterior belief q = 0.4, the
sender must randomize between a1 and a2 to satisfy the sender’s indifference condition.
However, the sender strictly prefers one action over the other, for instance, assume uS(a1) >

uS(a2). This implies that the sender’s preferred action a1 is induced with less than probability
one at belief q = 0.4. Since both actions are receiver’s best responses under some non-
degenerate belief, there exists a hyperplane passing through the belief q that separates the
simplex into two convex regions—one where the receiver prefers a1 and one where he prefers
a2. In our example, for the pair of actions a1 and a2, these convex regions are given by
the intervals [0, 0.4] and [0.4, 1] respectively. Using this partition, one can always identify a
state where the receiver also prefers the sender’s preferred action. Formally, given actions
a1, a2 ∈ A∗(q), there exists a state ω∗ such that q(ω∗) > 0 and uR(ω

∗, a1) ≥ uR(ω
∗, a2). In

our example (see Figure 2), both the sender and the receiver prefer action a1 over a2 in state
ω∗ = ω0. Hence, the equilibrium is not ex-post efficient in state ω∗. The deviation to play the
sender’s preferred action a1 is profitable and does not satisfy condition (i) of Proposition 7.

Now, consider a non-influential (or babbling) equilibrium where the receiver always plays
the action a ̸= a∗.13 As we assume the prior lies in the interior of the belief simplex, as
before, we can identify a state ω∗ where the receiver prefers the sender’s preferred action a∗

over a. For example, given a prior p ∈ [0.6, 0.8] in Figure 2, the equilibrium is babbling,
resulting in action a3 with certainty. However, both players prefer the action a∗ = a1 over a3
in state ω∗ = ω0. So, the equilibrium is not ex-post efficient in state ω∗. To summarize, any
cheap talk equilibrium that does not induce the sender’s preferred action a∗ with certainty
is inefficient.

(⇐) The babbling equilibrium where the sender’s preferred action a∗ is induced with
certainty is an efficient outcome. In this case, the sender gets the highest payoff within his
feasible set, ensuring that the outcome lies on the Pareto frontier.

A.5 Proof of Proposition 4
Let Hi for i ̸= 0 be the hyperplane defined by the set of points {ω0}

⋃
j ̸=i,0{oji} (see Figure

4). The hyperplane Hi separates the convex set Ci from Cj for all j ̸= i, 0. Denote by Ri the
region in the simplex given by the half-space of Hi that includes Ci. For any prior p ∈ Ri, it
is necessary that any feasible outcome induces the risky action ai. Similarly, let H0 be the

12We omit non-generic cases where the receiver has multiple best responses at any degenerate belief.
13If the receiver chooses a mixed action, select a pure action from the support that differs from the sender’s

preferred action, that is, pick action a ∈
⋃

m supp(τ(m)) such that a ̸= a∗.
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hyperplane defined by {o10, . . . , on0} and R0 denote the convex region in the simplex that
includes the node ω0 and is separated by the half-space of H0. For any prior p ∈ R0, it is
necessary to play the safe action a0 under any feasible outcome.

For any i, j ̸= 0 let Rij = Ri ∩ Rj ∩ R0 (see Figure 4). The convex set Rij is non-empty
as ω0 ∈ Rij. In fact, we show that dim(Rij) = dim(∆Ω) = n for all i, j ̸= 0. Given a
system of inequalities Ax ≤ b, an inequality a⊤i x ≤ bi in Ax ≤ b is an implicit equality if
a⊤i x̄ = bi ∀x̄ ∈ {x : Ax ≤ b}. A polyhedron R ⊆ Rl has full dimension (dim(R) = l) if and
only if it has no implicit equality, as shown by Conforti et al. (2014). The polyhedron Rij

is defined by the system of inequalities of the hyperspaces R0, Ri and Rj. If the polyhedron
Rij has an implicit equality, then all points p ∈ Rij lie on the hyperplane H0, Hi or Hj. But
this happens only if oij = oji or ok0 = ω0 where k = i, j. But as we assume (1) there is an
open neighbourhood Nω0 ⊂ C0 and (2) Ci ∩ Cj ̸= ∅, we can conclude there is no implicit
equality for the polyhedron Rij. Thus, we have dim(Rij) = dim(∆Ω) = n.

Given prior p ∈ Rij, any feasible outcome induces the actions ai, aj and a0. We claim that
posteriors of the BP outcome cannot include the vertices ωi or ωj. We prove by contradiction,
assume the feasible outcome µ1 is optimal and its induced posteriors include the vertex ωi.
As p ∈ R0, it needs to induce action a0 and its support includes the node ω0. Now, as
oi0 ∈ (ω0, ωi) and is separated from p by the hyperplane H0, there exists a feasible outcome
µ2, where the belief oio is induced instead of ωi. This outcome leads to a higher probability of
action ai and conversely a lower probability of action a0. Let λi denote the weight of outcome
µi on its posteriors. We have λ2(oio) =

λ1(ωi)
oio(ωi)

> λ1(ωi) and λ2(ω0) = λ1(ω0)− λ1(ωi)oi0(ω0)
oi0(ωi)

<

λ1(ω0). The weight on all other actions aj ̸= i remains the same. Thus, µ2 is a profitable
deviation and the posteriors of the BP outcome cannot include ωi or ωj.

Using the above result, for any prior p ∈ Rij, the BP outcome µ∗
p has either (a) three

actions ai, aj and a0 played in state ω0 (e.g.,
⋃

m∈M qm = {ω0, o10, o20} in Figure 4) or
(b) two actions played in states ωi and ωj (e.g.,

⋃
m∈M qm = {ω0, o12, o21} in Figure 4).

Generically, this violates the necessary condition for efficiency in Theorem 1. The set R∗ =⋃
j ̸=0

⋃
i ̸=j,0 Ri∩Rj ∩R0 combines the regions Rij for all pairs of distinct risky actions ai and

aj.

A.6 Proof of Proposition 5
First, we show for any p ∈ int(∆Ω) and action ai, there exists a threshold T i

p such that
whenever T > T i

p, any feasible outcome induces that action. Using this characterization, we
then show that there exist receiver preferences under which the BP outcome µ∗

p is necessarily
mixed for the partition PT .

Let q denote the point of intersection between the line joining the points ω0 and p and
the face F0 = {p ∈ ∆Ω : p(ω0) = 0}. Recall, the hyperplane Hi defined by the points
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Figure 5: Threshold beliefs for n = 2.

{ω0}
⋃

j ̸=i,0{oji}. It separates Ci and the convex sets {Cj}j ̸=i,0. The point p lies in the
region Ri if T ≥ T i

p = 1 − q(ωi) (see Figure 5). This follows as p ∈ Ri if and only if its
projection q ∈ Ri. And q belongs to Ri (for i ̸= 0) if and only if q(ωi) ≥ 1 − T . Similarly,
the hyperplane H0 separates the vertex ω0 and the convex sets {Cj}j ̸=0 and we have p ∈ R0

if T ≥ T 0
p = 1− p(ω0).

Let i∗ = argmax
i ̸=0

q(ωi) and let j∗ = argmax
i ̸=0,i∗

q(ωi). The vertices ωi∗ and ωj∗ represent the

states that are closest to the projection q ∈ ∆Ω. We have p ∈ int(Ri∗ ∩Rj∗ ∩R0) if

T > Tp = max{1− p(ω0), 1− q(ωi∗), 1− q(ωj∗)}. (28)

Since the common prior p ∈ int(∆Ω), we have p(ω0) > 0 and q(ωi) < 1 for i ̸= 0. Hence
each term in Equation (28) is strictly less than 1, and therefore Tp < 1.

Therefore, whenever the threshold T > Tp, the prior p lies in region R∗ and thus, gener-
ically, the Bayesian persuasion outcome µ∗

p is inefficient.

A.7 Proof of Proposition 6
Under our assumptions, in the first step the principal randomly selects among at least two
agents, i.e., t(k−1) ≥ 2. At least one of these agents, if chosen, is allocated the good. Hence,
with positive probability, either two distinct agents receive the good or one agent and the
principal do. Thus, for all ω ∈ Ω, we have |µ(ω)| ≥ 2. Moreover, since each agent has at
least two types, |Ω| =

∏k−1
i=1 |Ωi| ≥ 2k−1. Therefore,

∑
ω∈Ω |µ(ω)| ≥ 2|Ω| > k + |Ω|, where

the last inequality uses 2k−1 > k for k ≥ 3. This contradicts the bound in Theorem 1, so,
generically, the outcome induced by the ranking-based mechanism is inefficient.
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