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How should an expert send forecasts to maximize her utility subject to passing a calibration test? We consider

a dynamic game where an expert sends probabilistic forecasts to a decision maker. The decision maker

uses a calibration test based on past outcomes to verify the expert’s forecasts. We characterize the optimal

forecasting strategy by reducing the dynamic game to a static persuasion problem. A distribution of forecasts

is implementable by a calibrated strategy if and only if it is a mean-preserving contraction of the distribution

of conditionals (honest forecasts). We characterize the value of information by comparing what an informed

and uninformed expert can attain. Moreover, we consider a decision maker who uses regret minimization,

instead of the calibration test, to take actions. We show that the expert can always achieve the same payoff

against a regret minimizer as under the calibration test, and in some instances, she can achieve strictly more.

Additional Key Words and Phrases: strategic forecasting, calibration, regret, Bayesian persuasion, approacha-

bility.
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1 Introduction
Probability forecasts are widely used by experts to provide information about uncertain events.

The forecasts shape the beliefs of decision makers and persuade them to take specific actions. For

example, investors rely on forecasts by financial analysts to determine which asset will achieve

the best performance. However, the decision maker follows the expert’s forecasts only if they are

credible. One way to determine credibility is to perform statistical tests on the outcomes and verify

the claims of the expert. We focus on an objective and reasonable test: calibration. It is based on

the frequency interpretation of probability. The basic idea is to check if the forecast of a state are

close to the actual proportion of times the state occurred when the forecast was announced. For

example, the investor checks if an asset outperformed others 70% of the days on which an analyst

claimed the chance of it being the best was 0.7. Calibration is central to forecasting and is used

to assess the accuracy of prediction markets [Page and Clemen, 2012]. Decision makers rely on

accurate forecasters to take optimal actions. But in many settings, the expert herself has skin in

the game and is impacted by the decision maker’s action. This preference misalignment leads to

strategic forecasting. For instance, if a financial analyst earns a substantial commission upon the

purchase of a certain asset, her forecasts may be biased in favor of this asset. We study the extent

of an expert’s utility gain from strategic forecasting in an infinite horizon dynamic game. Our main

focus is on an informed expert who knows the data-generating process and can pass any complex

statistical test, including calibration. Given that she is tested by a calibration test (and failure leads

to a large loss), how should an expert send forecasts to maximize her utility?
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To do this, we develop a dynamic sender-receiver model. The state of nature evolves over time

according to a stochastic process. At every period, the sender sends a probabilistic forecast about

that day’s state to the receiver. The receiver performs the calibration test to determine the sender’s

credibility. If the sender passes the calibration test, the receiver takes the forecasts at face value

and takes an action as if the state is drawn according to the forecast. Otherwise, he takes a default

action and the sender incurs a punishment cost. The sender seeks to persuade the receiver to choose

actions that are aligned with her preferences.

One of the crucial assumptions made in dynamic sender-receiver models is that the receiver

either knows the distribution of the process or has a prior belief over the states. Thus, given the

sender’s strategy, he can perfectly analyze the messages, deduce the posterior beliefs and take

actions. Handling such beliefs in equilibrium, even in simple situations, is a daunting task. In

contrast to the Bayesian setting, we focus on the case where the receiver has no prior information.

He simply verifies the sender’s claims by performing the calibration test on the data so far: the

forecasts and the states.

We first analyze the case of an informed sender who knows the data-generating process. She can

always pass the calibration test by reporting honestly. However, there are other strategies she can

use to pass the test. We show passing the calibration test constrains the distribution of forecasts

that can be implemented. For a stationary and ergodic process, a calibrated forecasting strategy

implements a distribution of forecasts if and only if it is less informative than the distribution of

conditionals (or honest forecasts). Overall, the forecasts need to be accurate but can be less precise

than truth-telling.

Our main result shows that the sender’s maximum payoff equals her equilibrium payoff in

a static persuasion problem. The state, signal and prior of the persuasion game represent the

conditional probability, the forecast and the distribution of conditionals of the dynamic game.

In the persuasion problem, the sender persuades a receiver by committing to a signaling policy.

Previous work including [Kamenica and Gentzkow, 2011] and [Arieli et al., 2023] characterize the

optimal signaling policy that maximizes the sender’s ex-ante expected payoff. We show that the

optimal forecasting strategy can be constructed using the optimal signaling policy of the persuasion

problem. At each period, the forecasts are sent according to the optimal signaling policy and depend

solely on that period’s conditional. To summarize, we solve the dynamic forecasting game by

reducing it to a static persuasion problem.

Next, we consider an uninformed sender who does not know the data-generating process. As

shown by [Foster and Vohra, 1998], an uninformed sender can also pass the calibration test for

any process. As in the informed case, we characterize the maximum payoff an uninformed sender

can achieve in terms of the persuasion problem. However, for an uninformed sender, the prior is

determined by the empirical distribution of the states. Initially, we model nature as an adversary

attempting to prevent the sender from passing the test. In an adversarial environment, the maximal

payoff that she can (approximately) guarantee corresponds to the sender’s worst signaling policy

in the persuasion problem. This payoff is lower than the payoff an informed sender gets by honest

forecasting. Next, we show that if the environment is non-adversarial, the sender can guarantee

much more. For a stationary and ergodic process, the sender can (approximately) achieve the payoff

corresponding to the no information (or babbling) signaling policy in the persuasion problem. This

implies that the uninformed sender can always learn the empirical distribution of the states. Thus,

we compare the payoffs that an informed and uninformed sender can guarantee, and characterize

the value of information for a stochastic process.

We apply our model to analyze a financial application that provides forecasts to its users regarding

a state evolving according to a Markov chain. The app’s payoff from a forecast depends on its

precision and the user’s time engagement. While precise forecasts enhance the app’s reputation,
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they reduce the amount of time a user spends on it. We characterize the optimal forecasting strategy

for the app using the concavification approach. The optimal strategy is to provide accurate forecasts

which are less precise than honest forecasts.

Finally, we also model the receiver’s behavior using regret, owing to its close connection with

calibration (see [Perchet, 2014]). The receiver’s regret measures the difference in payoff he could

have gotten and what he actually got. Heuristics based on regret minimization ensure that, in

hindsight, the receiver could not have done better by playing any fixed action repeatedly. We

show that a receiver has no regret if he follows the recommendations of any calibrated forecasting

strategy. This justifies the use of calibration test as a heuristic in non-Bayesian environments.

Conversely, we show that when facing a regret minimizing receiver, the sender can guarantee the

equilibrium payoff in the persuasion problem, as in the case of calibration test. In fact, we provide

an example, for a natural class of regret minimizing algorithms, where she can guarantee strictly

more. Our work contributes to different strands of literature:

Strategic Information transmission: Our work contributes to the literature on communica-

tion between an informed sender and an uninformed receiver. In cheap talk [Crawford and Sobel,

1982], the sender’s message is unverifiable, while in Bayesian persuasion [Kamenica and Gentzkow,

2011], the sender commits to how the message is generated. In our dynamic setup, the sender

does not have commitment power and the messages are probabilistic forecasts. Our model bridges

the cheap talk and persuasion models. In particular, our work contributes in investigating the

role of communication in a dynamic environment (Best and Quigley, 2022, Renault et al., 2013,

Kuvalekar et al., 2022). Our main result shows that the dynamic forecasting game can be reduced to

a static persuasion problem (with a large state space)[Arieli et al., 2023]. Thus, our work provides a

micro-foundation for the commitment assumption in the Bayesian Persuasion setup. Our paper is

also related to [Guo and Shmaya, 2021], which considers a static model of forecasting and introduces

an exogenous cost of miscalibration.

Calibration and Expert Testing: The initial focus of this literature has been to design a statis-

tical test that can distinguish between an informed expert, who knows the data-generating process,

and an uninformed expert, who does not. The calibration test is an objective and popular criterion

for evaluating experts. However, [Foster and Vohra, 1998] show that even an uninformed expert can

pass the calibration test. Despite this, calibration is crucial for decision-making based on forecasts

(see [Foster and Hart, 2021]). Our contribution is to introduce the calibration test as a heuristic for

decision-making. We characterize the extent of strategic forecasting when the calibration test is

used to determine the credibility of the expert. In line with the literature, we compare the payoffs

that an informed and uninformed expert can achieve for a given process. Our work is related to

[Echenique and Shmaya, 2007], [Gradwohl and Salant, 2011] and [Olszewski and Pęski, 2011],

which also examines the expert’s forecasts in the context of a decision problem. They show that

a test exists which passes the informed expert, and if an uninformed expert also passes this test,

her forecasts do not lead to unfavorable outcomes. Calibration also has important applications in

machine learning (see [Gupta and Ramdas, 2021]). We refer curious readers to [Foster and Vohra,

2013] and [Olszewski, 2015] for comprehensive surveys on this topic.

No-Regret and Online Learning: There has been a growing interest in investigating regret

minimization in dynamic strategic interactions. We focus on optimizing against regret minimizing

agents (Braverman et al., 2018, Deng et al., 2019, Lin and Chen, 2024). The closest paper is [Lin

and Chen, 2024], which independently studies a repeated sender-receiver setting and provides

non-asymptotic bounds on what the sender can guarantee. They analyze an i.i.d. setting where
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the sender knows the state in each period. In contrast, our framework is broader, allowing the

sender to know only the distribution of states. Consequently, their bounds and techniques do

not directly apply to our setup. A natural class of regret learning algorithms called mean-based
learning algorithms was introduced by [Braverman et al., 2018] and further explored in [Deng

et al., 2019]. A common theme in the literature is that the sender can obtain a higher utility than

the rational benchmark when facing such algorithms. Similarly, we show the sender can obtain a

higher utility than the calibration benchmark against a mean-based leaner. Our contribution is to

show a novel connection between regret minimization and the calibration test as heuristics for

decision-making. Additionally, U-calibration, as introduced in [Kleinberg et al., 2023], is relevant

as it ensures low external regret for receivers with unknown payoff functions. Finally, we use

tools from online learning to solve the dynamic game (see Bernstein et al., 2014, Mannor et al., 2009).

The rest of the paper is organized as follows. In Section 2, we introduce the model and the

calibration test. In Section 3, we present the persuasion problem, prove our main results for both

informed and uninformed senders, and finally provide an application. In Section 4, we consider

a receiver who minimizes regret instead of using the calibration test. In Section 5, we conclude

and discuss future work. All omitted proofs are in Appendix A. In Appendix B, we consider an

environment where the receiver’s action affects how the states evolves. In Appendix C, we provide

a reformulation of the persuasion problem in terms of Blackwell experiments.

2 Model
We consider a dynamic game between a sender (she) and a receiver (he), in which the state of

nature changes over time. At each period, the sender sends a forecast about that period’s state

which is unknown. The receiver then chooses an action. The state and action are observed before

proceeding to the next period.

Let Ω denote the finite set of states, 𝐹 ⊆ ΔΩ 1
denote the set of feasible forecasts over the states,

and 𝐴 denote the finite set of actions. Unless specified otherwise, all forecasts are feasible, i.e.,

𝐹 = ΔΩ. Denote a play, i.e., an infinite sequence of states, by 𝜔∞ = (𝜔1, ....) ∈ Ω∞
. The state

{𝜔𝑡 }𝑡 ∈N evolves over time and is governed by a stochastic process with distribution 𝜇 ∈ ΔΩ∞
.

Denote by 𝜔𝑡 and 𝜔𝑡 = (𝜔1, ..., 𝜔𝑡−1) the state and the (public) history of the states at period 𝑡

respectively. We assume the sender is informed and knows the distribution of the process while the

receiver is uninformed and does not. Given the history 𝜔𝑡
, the sender can compute the conditional

probability 𝑝𝑡 ∈ ΔΩ of the states in that period, i.e., 𝑝𝑡 = 𝜇 (· | 𝜔𝑡 ) ∈ ΔΩ. So, the sender knows
the objective probability of the states at each period. We assume that the conditional probability

𝑝𝑡 takes values from a finite set 𝐷 ⊂ ΔΩ (for example, this assumptions holds for finite Markov

chains)
2
.

At each period 𝑡 ∈ N, the sender publicly announces a forecast 𝑓𝑡 ∈ ΔΩ based on the history of the

states and forecasts. Formally, the sender’s forecasting strategy is a map 𝜎 : ∪𝑡≥1 (𝐹 × Ω)𝑡−1 → Δ𝐹 .
After observing the forecast, the receiver takes an action 𝑎𝑡 ∈ 𝐴 and finally the state 𝜔𝑡 ∈ Ω is

observed. The payoff 𝑢𝑆 (𝜔𝑡 , 𝑎𝑡 ) and 𝑢𝑅 (𝜔𝑡 , 𝑎𝑡 ) for the sender and the receiver in a given period are

determined by the state 𝜔𝑡 and the receiver’s action 𝑎𝑡 .

Calibration Test: To model the receiver’s behavior, we take a frequentist approach using the

calibration test. The receiver has no prior information nor belief regarding the sender’s strategy.

He simply verifies the claims of the sender using the calibration test on the data he has. At each

1Δ𝐹 denotes the set of all probability distributions over the set 𝐹 .
2
If 𝐷 is not finite, we can construct a finite 𝜖-grid 𝐿 := {𝑝𝑙 ; 𝑙 ∈ 𝐿} such that for any 𝑝 ∈ ΔΩ there exists an 𝑙 ∈ 𝐿 such that

∥𝑝 − 𝑝𝑙 ∥ ≤ 𝜖 .
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period, he checks if the predicted forecasts are close to the realized frequency of the states when the

forecast was made. Formally, at the end of period 𝑡 , given an error margin 𝜖𝑡 , the receiver performs

the 𝜖𝑡 -calibration test. Based on the history of states and forecasts ℎ𝑡 = (𝑓1, 𝜔1, ...𝜔𝑡−1, 𝑓𝑡 , 𝜔𝑡 ), he
checks if the forecasts are 𝜖𝑡 -close to the empirical distribution of the states.

Definition 2.1 (Finite). A 𝑇 -sequence of forecasts (𝑓𝑡 )𝑇−1
𝑡=1 is 𝜖𝑇 -calibrated if

∑︁
𝑓 ∈𝐹

|N𝑇 [𝑓 ] |
𝑇

∥𝜔𝑇 [𝑓 ] − 𝑓 ∥ ≤ 𝜖𝑇 , (1)

where N𝑇 [𝑓 ] and 𝜔𝑇 [𝑓 ] refers to the set of periods and the empirical distribution of states when

the forecast is 𝑓 up to period 𝑇 respectively and ∥ · ∥ is the Euclidean norm, i.e.,

N𝑇 [𝑓 ] := {𝑡 ∈ {1, ...,𝑇 } : 𝑓𝑡 = 𝑓 }, 𝜔𝑇 [𝑓 ] :=
∑

𝑡 ∈N𝑇 [ 𝑓 ] 𝛿𝜔𝑡

|N𝑇 [𝑓 ] |
, (2)

where 𝛿𝜔 ∈ ΔΩ denotes the Dirac distribution on state 𝜔 .

A 𝑇 -sequence of forecasts is 𝜖𝑇 -calibrated if the empirical distribution of states 𝜔𝑇 [𝑓 ] is close
to 𝑓 for all forecast 𝑓 that were sent sufficiently often.

3
Let us look at a simple example of rain

forecasting.

Example 1. Let 𝜇 be a Markov chain over the state space Ω = {0, 1}. The sender predicts the chances
of rain (𝜔 = 1). Suppose that the weather remains the same next day with probability 0.8, i.e., transition
matrix 𝑇 (1 | 1) = 𝑇 (0 | 0) = 0.8. Consider three sequence of forecasts: 𝐹1, 𝐹2 and 𝐹3 (Table 1). 𝐹1 are
honest forecasts, where the sender announces 80% if it rained yesterday and 20% if it did not. 𝐹2 are
coarse forecasts,which are less precise than the honest ones. While, 𝐹3 correspond to extreme forecasts,
which predicts 100% if it rained yesterday and 0% if it did not.

Table 1. Sequence of forecasts and the calibration test.

Period 1 2 3 4 5 6 7 8 9 10
State 1 0 0 0 0 0 1 1 1 1
F1 80% 80% 20% 20% 20% 20% 20% 80% 80% 80% ✓

F2 60% 60% 40% 40% 60% 40% 40% 60% 60% 40% ✓

F3 100% 100% 0% 0% 0% 0% 0% 100% 100% 100% ✗

For the error margin 𝜖10 = 0.05, both 𝐹1 and 𝐹2 pass the 𝜖10-calibration test, while 𝐹3 does not. This
is because even on days where 𝐹3 predicts 100% chance of rain, it does not rain. In contrast, both the
forecasts 𝐹1 and 𝐹2 exactly match the realized frequencies. On days that 𝐹2 predicts 60% chance of
rain, it indeed rains 3 times out of 5. Both forecasts 𝐹1 and 𝐹2 have the same mean of 50%, with the
only difference that the forecasts 𝐹2 are less precise than the honest forecasts 𝐹1. Later, we show that
any distribution of forecasts with correct mean and less precision than honest forecasts can pass the
calibration test.

Pass: A sender passes the calibration test in period 𝑡 if the sequence of forecasts {𝑓𝑖 }𝑡−1𝑖=1 is

𝜖𝑡−1-calibrated. In this case, the receiver takes the forecast at face value and responds as if the

3
This holds even if the set 𝐹 is infinite, as the sum in the definition is implicitly constrained to the forecasts actually sent.
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state 𝜔𝑡 is drawn according to the forecast 𝑓𝑡 . He takes the action 𝑎(𝑓𝑡 ), where 𝑎(𝑓𝑡 ) denotes the
receiver’s optimal action when his belief over states is 𝑓𝑡 , i.e.,

4

𝑎(𝑓𝑡 ) := argmax

𝑎∈𝐴
{
∑︁
𝜔∈Ω

𝑓𝑡 (𝜔)𝑢𝑅 (𝜔, 𝑎)}. (3)

Fail: If the sender fails the calibration test, she incurs a punishment cost 𝑐 in that period, where

𝑐 < min𝜔,𝑎 𝑢𝑆 (𝜔, 𝑎). Consequently, the receiver refrains from playing according to the sender’s

forecast until she passes the test at a later period. One interpretation is that this cost results from

the receiver’s default action.
5
For example, in the case of financial forecasting, it could correspond

to not buying any asset, which results in zero commission for the analyst. Another interpretation

is that this cost arises from loss in credibility from inaccurate predictions. For example, consider an

intermediary (like a platform) who only forwards the sender’s forecast if she passes the calibration

test. Our aim is to examine the sender’s persuasive capability when her credibility hinges on passing

the calibration test.

Note that, for some 𝜖𝑇 ≥ 0, no forecasting strategy will be 𝜖𝑇 -calibrated for all possible 𝑇 -
sequences of states and forecasts. Even if a sender provides honest forecasts, 𝑖 .𝑒 ., 𝑓𝑡 = 𝑝𝑡 for all

𝑡 ∈ N, there is a non-negligible chance that the forecasts will not be 𝜖𝑇 -calibrated. For instance, in
Example 1 for 𝜖1 = 0.1, the honest forecasts 𝐹1 fails the 𝜖1-calibration test, regardless of the realized

state 𝜔1. However, as one collects more data, one expects the forecasts to become closer to the

empirical distribution of states. This motivates the definition of the (asymptotic) calibration test.

Definition 2.2 (Asymptotic). A forecasting strategy 𝜎 is 𝜖-calibrated if

lim sup

𝑇→∞

∑︁
𝑓 ∈𝐹

|N𝑇 [𝑓 ] |
𝑇

∥𝜔𝑇 [𝑓 ] − 𝑓 ∥ ≤ 𝜖, P𝜎,𝜇 − 𝑎.𝑠 . (4)

A forecasting strategy 𝜎 is calibrated if it is 𝜖-calibrated, for every 𝜖 > 0.

A forecasting strategy is calibrated if the (limit) empirical distribution of states exactly matches

with forecast 𝑓 for all possible 𝑓 that were used sufficiently often. We have already seen that the

requirement to pass the 𝜖𝑇 -calibration test for all periods 𝑇 might be too demanding. But is it

possible for a forecasting strategy to pass the (asymptotic) calibration test? Yes, an honest sender

passes the calibration test almost surely [Dawid, 1982]. Infact, there exists a sequence of error

margins which converges to zero, and an honest sender only fails the 𝜖𝑇 -calibration test in finitely

many periods (see Proposition A.1 in Appendix A). Throughout the paper, we assume that the

sequence of error margins satisfies this property.

Assumption 1. The sequence of error margins {𝜖𝑇 }∞𝑇=1 is such that lim𝑇→∞ 𝜖𝑇 = 0 and the sequence
of honest forecasts (𝑓𝑡 = 𝑝𝑡 ) only fails the 𝜖𝑇 -calibration test finitely many times (almost surely).

This assumption ensures that the (finite) calibration test does not erroneously reject an honest

sender. Otherwise, an honest sender might be punished in infinitely many periods.

The (asymptotic) calibration test has the desirable property of being independent of the chosen

sequence of error margins. Our motivation is to use the calibration test as the credibility criterion

for the sender. Therefore, we further assume that the sender must pass the (asymptotic) calibration

test.

Assumption 2. The sender’s forecasting strategy needs to be calibrated.

4
Given multiple optimal actions, we arbitrarily choose to break ties in favor of the sender.

5
Formally, 𝑢𝑆 (𝜔,𝑎𝑑 ) = 𝑐 and 𝑢𝑅 (𝜔,𝑎𝑑 ) = 0 for all 𝜔 ∈ Ω, where 𝑎𝑑 denotes the default action.
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The sender’s goal is to find the forecasting strategy 𝜎∗
that maximizes her long-run average

payoff

lim inf

𝑇→∞

∑𝑇
𝑡=1 𝑢𝑆 (𝜔𝑡 , 𝑎𝑡 )

𝑇
, (5)

such that equation (4) holds for all 𝜖 > 0. We refer to 𝜎∗
as the optimal forecasting strategy.

3 Main results
Our main result solves the dynamic forecasting game by reducing it to a static persuasion problem.

Before presenting our main result, we introduce the persuasion problem.

3.1 Persuasion problem
We consider a static model of persuasion between a sender and a receiver. The parameters of the

persuasion problem are linked to that of the dynamic forecasting game. In the persuasion problem,

the set of states and signals are both given by ΔΩ. The players have an atomic common prior

𝑃 ∈ Δ(ΔΩ). The state, signal and prior represent the conditional, the forecast and the distribution

of conditionals of the dynamic game respectively.

The sender commits to a signaling policy 𝜋 : ΔΩ → Δ(ΔΩ). 6 Once the conditional 𝑝 ∈ ΔΩ is

realized, the sender sends a forecast (or signal) 𝑞 ∈ ΔΩ according to the signaling policy 𝜋 (𝑝). Each
forecast 𝑞 ∈ ΔΩ results in a posterior belief about the conditionals and consequently a posterior

mean.
7
Without loss of generality, we can consider signaling policies such that the posterior mean,

given forecast 𝑞, equals 𝑞. Any signaling policy results in a distribution of posterior means (or

forecasts) 𝑄 ∈ Δ(ΔΩ). A distribution 𝑄 ∈ Δ(ΔΩ) is implementable by a signaling policy if and

only if 𝑄 is a mean-preserving contraction of 𝑃 (Arieli et al., 2023, Kolotilin, 2018).

The players’ utility only depends on the posterior mean (or forecast).
8
Denote by 𝑢𝑖 (𝑞), the

indirect utility of player 𝑖 ∈ {𝑆, 𝑅} when the forecast is 𝑞 ∈ ΔΩ. This corresponds to players’

expected stage payoff of the dynamic game when the state is drawn according to 𝑞 and the receiver

takes the optimal action 𝑎(𝑞).
A probability distribution is defined in terms of its mass and support. Let 𝑃 := ((𝜆),𝒑) be a

probability distribution on a finite support 𝒑 = (𝑝1, ...., 𝑝𝑛) ∈ R |Ω |×𝑛
with mass 𝝀 = (𝜆1, ..., 𝜆𝑛) ∈

R1×𝑛 such that 𝜆𝑖 > 0 ∀𝑖 ∈ {1, ..., 𝑛} and ∑𝑛
𝑖=1 𝜆𝑖 = 1. Let 𝑄 := (𝝁, 𝑞) be a probability distribution

with support on 𝑚 points 𝒒 = (𝑞1, ..., 𝑞𝑚) ∈ R |Ω |×𝑚
with mass 𝝁 = (𝜇1, ...., 𝜇𝑚) ∈ R1×𝑚 . We

adopt the definition of mean-preserving contractions as provided by [Elton and Hill, 1992] and

[Whitmeyer and Whitmeyer, 2021].

Definition 3.1. A probability distribution 𝑄 = (𝝁, 𝒒) is a simple mean-preserving contraction

(smpc) of 𝑃 = (𝝀,𝒑), if there exists a row-stochastic matrix 𝐺 ∈ R𝑛×𝑚 such that:

𝝀𝐺 = 𝝁, (6)

(𝝀𝒑)𝐺 = (𝝁𝒒), (7)

where 𝝀𝒑 = (𝜆1𝑝1, ..., 𝜆𝑛𝑝𝑛) ∈ R |Ω |×𝑛
and 𝝁𝒒 = (𝜇1𝑞1, ..., 𝜇𝑚𝑞𝑚)R |Ω |×𝑚

.

6
To clarify, the sender does not have commitment power in the dynamic forecasting game.

7
Formally, signaling policy 𝜋 and forecast (or signal) 𝑓 results in posterior mean 𝑞 =

∑
𝑝∈𝑆𝑢𝑝𝑝 (𝑃 ) 𝜆 (𝑝 )𝜋 (𝑓 | 𝑝 )𝑝 ∈ ΔΩ,

where 𝑃 := (𝝀, 𝒑) is the prior with mass 𝝀 and support 𝒑.
8
This assumption is key to identify the optimal policy (Arieli et al., 2023, Dworczak and Martini, 2019, Kleiner et al., 2021).



EC ’24, July 8–11, 2024, New Haven, CT, USA Atulya Jain and Vianney Perchet

Intuitively, a simple mean-preserving contractions takes fraction 𝐺𝑖 𝑗 of mass 𝜆𝑖 at 𝑝𝑖 for all

𝑖 ∈ {1, ..., 𝑛} and merges them together to get mass 𝜇 𝑗 at 𝑞 𝑗 for all 𝑗 ∈ {1, ...,𝑚}.

Definition 3.2. 𝑄 is a mean-preserving contraction (mpc) of 𝑃 if there exists a sequence of spmcs

{𝑄𝑚}∞𝑚=1 that satisfies 𝑄𝑚 →𝑤 𝑄 (weak convergence). Denote by M(𝑃) the set of all mpcs of 𝑃 .

The sender’s goal is to find the optimal distribution 𝑄∗ ∈ M(𝑃) that maximizes her expected

indirect utility. Let 𝜋∗
denote the optimal signaling policy which implements the optimal distribu-

tion 𝑄∗
. Given prior distribution 𝑃 ∈ Δ(ΔΩ) and sender’s indirect utility 𝑢𝑆 , the solution to the

persuasion problem (𝑃,𝑢𝑆 ) is given by:

Per(𝑃,𝑢𝑆 ) = max

𝑄∈M(𝑃 )
E𝑄 [𝑢𝑆 ] (8)

For example, let Ω = {0, 1} 9
and let the sender’s utility be given by 𝑢𝑆 (0.4) = 𝑢𝑆 (0.6) = 1 and

𝑢𝑆 (𝑓 ) = 0 for 𝑓 ∉ {0.4, 0.6}. The prior 𝑃 is given and shown below:
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The optimal signaling policy only sends forecasts 𝑞 = 0.4 and 𝑞 = 0.6 and is given by 𝜋∗ (𝑞 = 0.4 |
𝑝 = 0.2) = 𝜋∗ (𝑞 = 0.6 | 𝑝 = 0.8) = 2

3
. This results in the distribution of forecasts 𝑄∗

which is a mpc

of the distribution of conditionals 𝑃 . The distribution 𝑄 is obtained by merging the distribution 𝑃

according to the matrix 𝐺 . The orange and green lines represent the weight of the conditionals

that are merged to get the forecasts 0.4 and 0.6 respectively.
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The onlyway for the sender to get expected utility of 1 is by implementing the optimal distribution

𝑄∗ ∈ M(𝑃) which has equal mass on the forecasts 𝑞 = 0.4 and 𝑞 = 0.6.
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9
As the state space is binary, we use the probability of state 1 to denote the forecast of the states.
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Now, we provide a sufficient condition when the persuasion problem can be solved using the

concavification approach (Aumann et al., 1995, Kamenica and Gentzkow, 2011) applied to a restricted

domain.

Proposition 3.3. If 𝑆𝑢𝑝𝑝 (𝑃) is affinely independent, then the solution of the persuasion problem
(𝑃,𝑢𝑆 ) is given by

Per(𝑃,𝑢𝑆 ) = 𝐶𝑎𝑣 𝑢𝑆
��
𝐶
(B(𝑃)) (9)

where, 𝐶𝑎𝑣 𝑢𝑆
��
𝐶
denotes the concave envelope of 𝑢𝑆 restricted to domain 𝐶 = 𝐶𝑜 (𝑆𝑢𝑝𝑝 (𝑃))) and

B(𝑃) = ∑𝑛
𝑖=1 𝜆𝑖𝑝𝑖 denotes the barycenter (or mean) of the distribution 𝑃 . 10

The proof relies on the simple characterization of M(𝑃) when 𝑆𝑢𝑝𝑝 (𝑃) is affinely independent.

The feasibility condition corresponds to Bayes plausibility in the restricted domain (see Proposition

A.2 in the appendix). Hence, the solution is given by the concave envelope restricted to𝐶𝑜 (𝑆𝑢𝑝𝑝 (𝑃)).
A special case is when the sender is perfectly informed and she can commit to a signaling policy as

a function of the underlying state (𝑆𝑢𝑝𝑝 (𝑃) = ∪𝜔∈Ω𝛿𝜔 ). This corresponds to the standard Bayesian
persuasion model [Kamenica and Gentzkow, 2011].

Corollary 3.4. If the sender is perfectly informed, the solution of the persuasion problem (𝑃,𝑢𝑆 ) is
given by

Per(𝑃,𝑢𝑆 ) = 𝐶𝑎𝑣 𝑢𝑆 (B(𝑃)). (10)

The persuasion problem attains its maximum at an extreme point of M(𝑃). [Whitmeyer and

Whitmeyer, 2021] show that if |𝑆𝑢𝑝𝑝 (𝑃) | = 𝑛, then it suffices to restrict the search to distributions

𝑄 with finite support such that |𝑆𝑢𝑝𝑝 (𝑄) | ≤ 𝑛. [Dworczak and Martini, 2019] and [Arieli et al.,

2023] study the persuasion problem for a non-atomic prior 𝑃 and interval state space (ΔΩ = [0, 1]).
They show it is sufficient to search within the class of bi-pooling policies to find the optimal policy.

In Appendix C, we provide a reformulation of the persuasion problem using Blackwell experiments

(mean-preserving spreads).

3.2 Optimal forecasting strategy
In this subsection, we consider an informed sender in the dynamic game, who knows the data-

generating process. We provide a necessary and sufficient condition for a forecasting strategy to be

calibrated. Specifically, for a stationary ergodic process, the condition is that the distribution of

forecasts is a mean-preserving contraction of the distribution of conditionals. This can be thought

of as merging low-value and high-value forecasts with appropriate weights such that the overall

forecast is calibrated. Finally, we characterize the optimal forecasting strategy.

Let 𝐶𝜇 ∈ Δ(ΔΩ) denote the distribution of conditionals for stochastic process 𝜇

𝐶𝜇 (𝑝) = lim

𝑇→∞

∑𝑇
𝑡=1 1{𝑝𝑡=𝑝 }

𝑇
(if limit exists) (11)

where 𝑝𝑡 = 𝜇 (· | 𝜔1, ..., 𝜔𝑡−1) ∈ ΔΩ. Note, both 𝑝𝑡 and 𝐶𝜇 are random variables and depend on the

realization of 𝜔𝑡
and 𝜔∞

respectively. Given a forecasting strategy 𝜎 and stochastic process 𝜇, let

𝐹𝜇,𝜎 ∈ Δ(ΔΩ) denote the distribution of forecasts:

10𝐶𝑜 (𝐴) refers to the convex hull of set 𝐴.
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𝐹𝜇,𝜎 (𝑓 ) = lim

𝑇→∞

∑𝑇
𝑡=1 1{ 𝑓𝑡=𝑓 }

𝑇
(if limit exists) (12)

where 𝑓𝑡 is chosen randomly according to 𝜎 (𝑓1, 𝜔1..., 𝑓𝑡−1, 𝜔𝑡−1). If the sender reports honestly then

the distribution of forecasts equals the distribution of conditionals.

For any stochastic process, an informed sender can always pass the calibration test by forecasting

honestly. However, without imposing restrictions on the process, characterizing the set of feasible

outcomes that pass the calibration test is difficult. Consequently, we focus on the class of stationary

and ergodic processes, for which the distribution of conditionals is well defined. Recall Example 1

of a Markov chain over binary states to illustrates this.

Example 1 (continued). There are two states Ω = {0, 1} which evolve according to transition matrix
𝑇 (1 | 1) = 𝑇 (0 | 0) = 0.8. As the Markov chain is aperiodic and irreducible, the limit distribution over
states converges to the (unique) invariant distribution 𝜋∗ (1) = 𝜋∗ (0) = 0.5 for any initial distribution
𝜋0.

lim

𝑛→∞

∑︁
𝑖∈Ω

𝜋0 (𝑖)𝑇𝑛 (𝑖, 𝑗) = 𝜋∗ ( 𝑗) ∀𝜋0 ∈ ΔΩ.

In the long run, both rain (𝜔 = 1) and no rain (𝜔 = 0) occur with equal probability 0.5 leading to
conditional probabilities of 80% and 20%, respectively. Hence, the distribution of conditionals 𝐶𝜇 exists
and is constant 𝜇-almost surely, with equal mass of 0.5 on the supports of 20% and 80%. An informed
sender who knows the process 𝜇 also knows the distribution of conditionals 𝐶𝜇 . The distribution 𝐶𝜇

corresponds to the prior of the persuasion problem described in Section 3.1.

Recall that a stochastic process {𝜔𝑡 }𝑡 ∈N is stationary if, for any 𝑘 ∈ N, the joint distribution
of the 𝑘−tuple (𝜔𝑡 , 𝜔𝑡+1, ..., 𝜔𝑡+𝑘−1) does not depend on 𝑡 . Let 𝜇 ∈ ΔΩ∞

denote the distribution

of the stationary process. Let 𝑇 : Ω∞ → Ω∞
be the shift transformation given by 𝑇 (𝜔)𝑡 = 𝜔𝑡+1

for all 𝑡 ∈ Z. Let I denote the 𝜎−algebra of all invariant Borel sets for the transformation 𝑇 . The

stationary process {𝜔𝑡 }𝑡 ∈N is ergodic if I is trivial, that is, P(𝐴) ∈ {0, 1} for all 𝐴 ∈ I. All the
statistical properties can be deduced from a single, long realization of the stationary ergodic process.

This makes the search for the optimal forecasting strategy tractable.

Recall that the indirect utility 𝑢𝑖 (𝑓 ) is the expected payoff when the states are drawn according

to 𝑓 ∈ ΔΩ and the receiver plays the optimal action 𝑎(𝑓 ). Given a calibrated strategy, the empirical

distribution of states conditional on forecast 𝑓 exactly match with the forecast 𝑓 and the receiver

plays the action 𝑎(𝑓 ) on (almost) all such periods. Thus, for a calibrated strategy, the long-run

average payoff for player 𝑖 when the forecast was 𝑓 equals 𝑢𝑖 (𝑓 ). Now, we state our main result

that characterizes the optimal forecasting strategy.

Theorem 3.1. For a stationary ergodic process 𝜇, the informed sender can achieve the solution of
the persuasion problem 𝑃𝑒𝑟 (𝐶𝜇, 𝑢𝑆 ).
Proof. First, we characterize the set of feasible outcomes for the class of stationary ergodic

processes. To do so, we fist show that the distribution of conditionals𝐶𝜇 converges and is constant for

almost every play (see Lemma A.3 in the appendix). So, an informed sender knows the distribution

of conditionals 𝐶𝜇 . Next, we provide, in Lemma 3.2, a sufficient and necessary condition for a

forecasting strategy to be calibrated. The feasible distributions of forecasts are precisely the set of

mean-preserving contractions of the distribution of conditionals.

Lemma 3.2. For a stationary ergodic process 𝜇, if a forecasting strategy 𝜎 is calibrated then 𝐹𝜇,𝜎 ∈
M(𝐶𝜇). Conversely, for any 𝑄 ∈ M(𝐶𝜇), there exists a calibrated strategy 𝜎 such that 𝐹𝜇,𝜎 = 𝑄 .
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Now, we construct the optimal forecasting strategy 𝜎∗
. As the sender knows the distribution

of conditionals 𝐶𝜇 , she can compute the optimal signaling policy 𝜋∗
of the persuasion problem

(𝐶𝜇, 𝑢𝑆 ). Consider the forecasting strategy 𝜎∗
𝑡 (𝑓𝑡 = 𝑓 | 𝑝𝑡 = 𝑝) = 𝜋∗ (𝑓 | 𝑝) for all 𝑡 ∈ N. At any

period 𝑡 , the strategy only depends on the conditional 𝑝𝑡 of that period. We show that it achieves

the solution of the persuasion problem Per(𝐶𝜇, 𝑢𝑠 ).

= lim inf

𝑇→∞

∑𝑇
𝑡=1 𝑢𝑆 (𝜔𝑡 , 𝑎𝑡 )

𝑇
(13)

= lim inf

𝑇→∞

∑
𝑓 ∈𝑆𝑢𝑝𝑝 (𝑄∗ )

∑
𝑝∈𝐷 𝜋∗ (𝑓 | 𝑝)∑𝑇

𝑡=1 1{𝑝𝑡=𝑝 }𝑢𝑆 (𝜔𝑡 , 𝑎(𝑓 ))
𝑇

(14)

=
∑︁
𝑝∈𝐷

𝐶𝜇 (𝑝)
∑︁
𝜔

𝑝 (𝜔)𝜋∗ (𝑓 | 𝑝)𝑢𝑆 (𝜔, 𝑎(𝑓 )) (15)

= Per(𝐶𝜇, 𝑢𝑆 ) (16)

As the set of feasible distribution of forecasts are the set of mpcs of the distribution of conditionals,

the sender cannot achieve a higher long-run average payoff.

□

Finally, we also provide a sufficient and necessary condition for a forecasting strategy to pass

the calibration test for any stochastic process 𝜇.

Lemma 3.3. A forecasting strategy 𝜎 passes the calibration test if and only if

lim sup

𝑇→∞

∑︁
𝑓 ∈𝐹

|𝑁𝑇 [𝑓 ] |
𝑇

∥ 𝑓 −
∑︁
𝑝∈𝐷

𝑝𝜇𝑇 (𝑓 , 𝑝)∥ = 0 𝜇-a.s. where, 𝜇𝑇 (𝑓 , 𝑝) =
∑𝑇

𝑡=1 1{𝑝𝑡=𝑝,𝑓𝑡=𝑓 }∑𝑇
𝑡=1 1{ 𝑓𝑡=𝑓 }

(17)

The term 𝜇𝑇 (𝑓 , 𝑝) corresponds to the relative weight on conditional 𝑝 given forecast 𝑓 . In the

long-run, combining all conditionals 𝑝 with their respective weights 𝜇𝑇 (𝑓 , 𝑝) equals forecast 𝑓 .
This resembles the definition of a mean-preserving contraction. But even though equation (17)

holds for any stochastic process, the distributions𝐶𝜇 and 𝐹𝜇,𝜎 might not be well defined. This makes

it intractable to characterize the set of feasible outcomes for a calibrated forecasting strategy.

3.3 Uninformed expert
In this section, we consider an uninformed sender who does not know the data-generating process.

[Foster and Vohra, 1998] show that an uninformed sender can come up with a calibrated forecasting

strategy for any stochastic process. We ask: what is the maximum payoff that the sender can

guarantee? How does this payoff compare with that of an informed sender? First, we tackle the

worst case scenario where nature acts as an adversary. Then, we analyze the case where the

stochastic process is stationary and ergodic but still unknown to the sender.

The sender’s goal is to maximize her long-run average payoff while passing the calibration test.

nature acts as an adversary trying to prevent the sender from doing so. The receiver’s behavior

can be summarized by the calibration test criterion. Given that the sender passes the calibration

test, the receiver plays according to the forecast almost surely. So, our focus is on the interaction

between the sender and nature.

At every period 𝑡 , the sender and nature simultaneously choose 𝑓𝑡 ∈ 𝐹 and 𝜔𝑡 ∈ Ω respectively.

A strategy 𝜏 for nature is a mapping from the set of all possible past histories to the set of mixed

states, i.e, 𝜏 :

⋃
𝑡≥0 (𝐹 × Ω)𝑡−1 → ΔΩ. Let 𝜔𝑇 ∈ ΔΩ denote the empirical distribution of states by
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period 𝑇 :

𝜔𝑇 =
1

𝑇

𝑇∑︁
𝑖=1

𝛿𝜔𝑖
(18)

For this section, we focus on a less ambitious goal: 𝜖−calibration test.
11
This allows us to consider

a finite set of forecasts. Given 𝜖 > 0, the set of feasible forecasts 𝐹𝜖 is given by the regular 𝜖-grid:

𝐹𝜖 = {
∑︁
𝜔∈Ω

𝑛𝜔𝛿𝜔 ∈ ΔΩ | 𝑛𝜔 ∈ {0, 1
𝐿
, ..., 1} and

∑︁
𝜔∈Ω

𝑛𝜔 = 1}. (19)

where, 𝐿 = ⌈
√

|Ω |−1
2𝜖

⌉ ∈ N. 12 This ensures (generically) for any 𝑝 ∈ ΔΩ there exists a unique pure

forecast 𝑓 ∈ 𝐹𝜖 such that ∥ 𝑓 − 𝑝 ∥ ≤ 𝜖 . We denote this forecast in the 𝜖-neighborhood of 𝑝 as 𝑓 ∗ (𝑝).
If the sender knew beforehand that the empirical distribution 𝜔𝑇 would be equal to 𝑝 ∈ ΔΩ, she

could repeatedly send the fixed forecast 𝑓 ∗ (𝑝) and pass the calibration test. This would allow the

sender to achieve 𝑢𝑆 (𝑓 ∗ (𝑝)). We characterize what the uninformed sender can attain as a function

of the (limit) empirical distribution of states.

Definition 3.4. A function ℎ : ΔΩ → R is attainable by the sender if there exists a forecasting

strategy 𝜎 such that for any nature’s strategy 𝜏 , we have

(1) lim inf𝑇→∞ (
∑𝑇

𝑡=1 𝑢𝑆 (𝜔𝑡 ,𝑎𝑡 )
𝑇

− ℎ(𝜔𝑇 )) ≥ 0 P𝜎,𝜏 − 𝑎.𝑠,

(2) lim sup𝑇→∞
∑

𝑓 ∈𝐹
|N𝑇 [ 𝑓 ] |

𝑇
∥𝜔𝑇 [𝑓 ] − 𝑓 ∥ ≤ 𝜖 P𝜎,𝜏 − 𝑎.𝑠 .

The first condition states that the long-run average payoff is higher than the function ℎ(𝑝),
where 𝑝 is the (limit) empirical distribution of states. While the second condition states that the

forecasting strategy passes the 𝜖−calibration test. Both conditions need to be satisfied almost surely

with respect to the probability distributions induced by the strategy profile (𝜎, 𝜏).
In the next theorem, we show the closed convex hull of the indirect utility function is attainable.

Denote by 𝐶𝑜 (ℎ) the closed convex hull of function ℎ 13
. The function 𝐶𝑜 𝑢𝑆 (𝑓 ∗ (𝑝)) is always less

than or equal to 𝑢𝑆 (𝑓 ∗ (𝑝)) for all 𝑝 ∈ ΔΩ. Furthermore, it is continuous on ΔΩ. Unlike the concave
envelope of the sender’s utility function, which represents the best mpc maximizing the sender’s

expected utility, the closed convex hull represents the sender’s worst mpc, minimizing the expected

utility. Finally, we show it is the highest function that an uninformed sender can attain.

Theorem 3.5. For an uninformed sender, 𝐶𝑜 𝑢𝑆 (𝑓 ∗ (𝑝)) is the highest attainable function, where
𝑝 ∈ ΔΩ is the (limit) empirical distribution of states.

Sketch of Proof. We use the technique of approachability to prove the theorem. We first show

the function 𝐶𝑜 𝑢𝑆 (𝑓 ∗ (𝑝)) is attainable and then show it is the highest attainable function. To do

so, we reformulate the criteria of an attainable function in terms of a vector-valued payoff function.

We show the sender can come up with a strategy such that this payoff converges to the target set,

no matter what nature does.

At every period, the action of the sender and nature result not only in the sender’s payoff but

also a calibration cost. Given forecast 𝑓 ∈ 𝐹𝜖 and state 𝜔 ∈ Ω the calibration cost is given by:

11
This weaker criterion is common in literature, at least as a first step. Using 𝜖−calibrated strategies and the "doubling

trick" one can obtain calibrated strategies (Perchet, 2014, Mannor and Stoltz, 2010, Cesa-Bianchi and Lugosi, 2006).

12
where ⌈𝑥 ⌉ denotes the smallest integer greater than or equal to x.

13
Given a function 𝑓 : 𝑋 → R, over a convex domain 𝑋 , its closed convex hull is the function whose epigraph is

𝐶𝑜 ({ (𝑥, 𝑟 ) ) : 𝑟 ≥ 𝑓 (𝑥 ) } ) where,𝐶𝑜 (𝑋 ) is the closed convex hull of set 𝑋 .
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𝑐 (𝑓 , 𝜔) = (0, ..., 𝑓 − 𝛿𝜔 , ...., 0) ∈ R |𝐹𝜖 | |Ω | . (20)

It is a vector of |𝐹𝜖 | elements of size R |Ω |
with one non-zero element (at the position for 𝑓 )

while the rest are equal to 0 ∈ R |Ω |
. The calibration condition (2.2) can be rewritten as follows: the

average of the sequence of vector-valued calibration costs 𝑐 (𝑓𝑡 , 𝜔𝑡 ) converges to the set 𝐸𝜖 almost

surely, where

𝐸𝜖 = {𝑥 ∈ R |𝐹𝜖 | |Ω |
:

∑︁
𝑓 ∈𝐹

∥𝑥
𝑓
∥ ≤ 𝜖} (21)

Thus, the goal of the sender is to maximize the average payoff, such that the average calibration

cost converge to 𝐸𝜖 pathwise.
14

The crux of the proof is to combine the sender’s payoff and

calibration cost to form a vector-valued payoff. Then, we use the dual condition of approachability

to show the closed and convex function 𝐶𝑜 𝑢𝑆 (𝑓 ∗ (𝑝)) is attainable. A set is approachable if the
sender has a forecasting strategy such that the average vector-valued payoff converges to the target

set no matter how nature plays. Convergence rate results follow from approachability theory (see

appendix for the complete proof).

To show it is also the highest attainable function, we construct a nature’s strategy that prevents

the sender from attaining any higher function without failing the calibration test. Let 𝛼𝑙 and

𝑝𝑙 denote the weight and support of the closed convex hull of the sender’s utility function, i.e.,

𝐶𝑜 𝑢𝑆 (𝑓 ∗ (𝑝)) =
∑𝑘

𝑙=1
𝛼𝑙𝑢𝑆 (𝑓 ∗ (𝑝𝑙 )). Nature plays in a sequence of 𝑘 blocks, where the relative size

of block 𝑙 equals 𝛼𝑙 . In block 𝑙 , nature plays repeatedly the mixed action 𝑝𝑙 ∈ ΔΩ. So, the states
in block 𝑙 are drawn i.i.d according to 𝑝𝑙 . The only calibrated strategy is to repeatedly send the

forecast 𝑓 ∗ (𝑝𝑙 ) almost surely. The crucial step is to show that the sender must pass the calibration

test within each block to pass the overall calibration criterion. If she does not, then nature can come

up with a punishment strategy that ensures that the sender fails the overall calibration test. □

So far, nature acted as an adversary preventing the sender from passing the calibration test. In

particular, we assume nature can condition her actions based on the sender’s previous forecasts. Can

an uninformed sender do better when nature is non-adversarial and states are drawn according to a

fixed process? We show that this indeed possible. If the stochastic process is stationary and ergodic,

the sender is able to attain the indirect utility function 𝑢𝑆 (𝑓 ∗ (𝑝)). This allows us to compare the

attainable payoffs of an informed and uninformed sender.

Lemma 3.6. For a stationary ergodic process, the function 𝑢𝑆 (𝑓 ∗ (𝑝)) is attainable, where 𝑝 ∈ ΔΩ is
the empirical distribution of states.

Sketch of Proof. The proof uses the concept of opportunistic approachability (see [Bernstein

et al., 2014]). A set that is not approachable in general can be approached if nature plays favorably

or in a non-adversarial manner. Nature can no longer use a punishment strategy that forces the

sender to fail the calibration test on deviation. Given the process is stationary and ergodic, any

play results in the empirical distribution being in the neighborhood around 𝑝 . The sender comes

up with a forecasting strategy that learns the (limit) empirical distribution and thus attains the

function 𝑢𝑆 (𝑓 ∗ (𝑝)). □

The sender is not required to know that the process is stationary and ergodic beforehand to

achieve this benchmark. If nature’s strategy proves favorable, she achieves the favorable payoff;

14
Formally, this implies lim sup𝑡→∞ dist(

∑𝑇
𝑡=1

𝑐 (𝑓𝑡 ,𝜔𝑡 )
𝑇

, 𝐸𝜖 ) → 0 a.s. where, 𝑑𝑖𝑠𝑡 (.) is the Euclidean distance.
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otherwise, she still achieves the lower benchmark of the general setting.
15
In summary, an unin-

formed sender can attain 𝐶𝑜 𝑢𝑆 (𝑓 ∗ (𝑝)) in general, and 𝑢𝑆 (𝑓 ∗ (𝑝)) if the process is stationary and

ergodic, where 𝑝 denotes the empirical distribution of states.

3.4 Application: Financial Application
In this section, we consider a financial app (sender) that sends forecasts about a binary state to

a user (receiver). The app’s utility from a forecast depends on its precision and the user’s time

engagement. Our focus is on the app and the maximal utility it can get when it needs to pass the

calibration test. The app must balance precise forecasts with time users spend on it. We show it is

optimal to provide accurate but less precise forecasts as compared to honest forecasting.

Each day, the user has to decide whether to invest in the financial market or not. The market can

be in two states: Ω = {𝐻, 𝐿}. The user only wants to invest if the state is 𝐻 .
16
The state changes

through time according to a Markov chain with the transition matrix: 𝑇 (𝐻 | 𝐻 ) = 𝑇 (𝐿 | 𝐿) = 0.95.

After observing the app’s forecast, the user can acquire more information by paying a fee, which

can be thought of as the time spent on the app.

The timing of the forecasting and the information acquisition is as follows. Each day 𝑡 ∈ N, the
app sends a forecasts the state of that day 𝑓𝑡 ∈ ΔΩ. Let 𝑓𝑡 simply denote P(𝜔𝑡 = 𝐻 ) ∈ [0, 1]. The
user checks for the credibility of the app using the calibration test. If the app fails the test, he does

not use the app. If the app passes the test, he uses the app’s forecast as his prior belief 𝑝𝑡 ∈ ΔΩ and

acquires signals by paying a cost to the app. The cost of information acquisition is equal to the

expected change in the prior and posterior log-likelihood ratio [Morris and Strack, 2019].

𝐶 (𝐺) =
{
𝜅1

∫
1

0
𝐿(𝑞)𝑑𝜇 (𝑞) − 𝐿(𝑝) if B(𝐺) = 𝑝

∞ else

where, 𝜅1 > 0, 𝐿(𝑞) = 𝑞 log( 1

1−𝑞 ) + (1 − 𝑞) log( 1−𝑞
𝑞
) denotes the log-likelihood ratio for belief

𝑞, and 𝑝 and 𝐺 denote the prior belief and the posterior distribution of the user respectively. The

user acquires information till he is certain of the state up to a 95% threshold. Let 𝐺∗
𝑝 denote the

probability distribution with support 0.05 and 0.95, and mean 𝑝 (whenever feasible). Starting with

prior belief 𝑝 , the app’s utility from signal acquisition (see Fig. 1) is given by :

𝑢
𝑠𝑖𝑔

𝑆
(𝑝) =

{
𝐶 (𝐺∗

𝑝 ) 0.05 ≤ 𝑝 ≤ 0.95

0 otherwise

The app also gains utility from announcing precise forecasts, which can be interpreted as

reputation. The utility is higher when the forecast is more precise. The app’s utility gain in

reputation from announcing forecast 𝑝 (see Fig. 2) is given by:

𝑢
𝑟𝑒𝑝

𝑆
(𝑝) = 𝜅 (𝑝 − 0.5)2 (22)

for some constant 𝜅 > 0. The app’s total (indirect) utility 𝑢𝑆 (𝑝) from announcing forecast 𝑝 is

the sum of these two components (Fig. 3):

𝑢𝑆 (𝑝) = 𝑢
𝑠𝑖𝑔

𝑆
(𝑝) + 𝑢𝑟𝑒𝑝

𝑆
(𝑝) (23)

15
[Bernstein et al., 2014] show that this property holds true even in general settings.

16
Formally, we have 𝑢𝑅 (𝐻,𝑏 ) = 1,𝑢𝑅 (𝐿,𝑏 ) = −1 and 𝑢𝑅 (𝐻,𝑑𝑏 ) = 𝑢𝑅 (𝐿,𝑑𝑏 ) = 0 where 𝑏 and 𝑑𝑏 denote the actions buy

and don’t buy.
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The user always prefers accurate and precise forecasts to take the optimal action and minimize

the information acquisition cost. But the app faces a trade-off. On the one hand, revealing precise

information increases the app’s reputation. While on the other, a precise forecast reduces signal

acquisition utility. On average, the user spends lesser time on the app. The app’s goal is to find

the optimal forecasting strategy that maximizes its long-run average payoff subject to passing the

calibration test.
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Fig. 3. 𝑢𝑆 (𝑝)

Using Theorem 3.1, we know the optimal calibrated strategy corresponds to the solution to the

persuasion problem (𝐶𝜇, 𝑢𝑆 ). Given 𝑆𝑢𝑝𝑝 (𝐶𝜇) = {0.05, 0.95} is affinely independent, we can use

Proposition 3.3 to find the optimal distribution and the optimal forecasting strategy (see Fig. 3,

where 𝐶 = [0.05, 0.95] and B(𝐶𝜇) = 0.5). The solution is given by:

Per (𝐶𝜇, 𝑢𝑆 ) = 𝐶𝑎𝑣 𝑢𝑆
��
[0.05,0.95] (0.5) (24)

The distribution of conditionals 𝐶𝜇 and the optimal distribution 𝑄∗
are given by:

𝐶𝜇 =

[
𝜆

𝑝

]
=

[
1

2

1

2

5

100

95

100

]
𝑄∗ =

[
𝜇

𝑞

]
=

[
1

2

1

2

15

100

85

100

]
The optimal forecasting strategy 𝜎∗, for all 𝑡 ∈ N, is given by:

𝜎∗ (𝑓𝑡 = 15% | 𝑝𝑡 = 5%) = 8

9

𝜎∗ (𝑓𝑡 = 85% | 𝑝𝑡 = 5%) = 1

9

(25)

𝜎∗ (𝑓𝑡 = 15% | 𝑝𝑡 = 95%) = 1

9

𝜎∗ (𝑓𝑡 = 85% | 𝑝𝑡 = 95%) = 8

9

(26)

If the app was perfectly informed and knew the state 𝜔 ∈ {𝐻, 𝐿}, it would want to reveal it

honestly at the start of each day. This corresponds to the standard Bayesian persuasion solution

([Kamenica and Gentzkow, 2011]), i.e., the concave envelope of the utility function (with no

restriction on the domain). Even though the user spends no time on the app, the utility from

reputation is unmatched. But given the distribution 𝐶𝜇 , the app cannot announce the true states

without failing the calibration test. Thus, for a partially informed app (𝑝𝑡 = {5%, 95%}), the optimal

strategy is to announce accurate but coarse forecasts (𝑓𝑡 = {15%, 85%}). This corresponds to the

concave envelope of the utility function restricted to the support induced by the conditionals (red

line in Fig 4).
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Fig. 4. Financial App

What could the app achieve if it was uninformed? The app would be able to approximately attain

the indirect utility function 𝑢𝑆 (𝑝) (blue line).17 This corresponds to the no information signaling

policy of the persuasion problem. The difference between the red and the blue line gives us the

value of information for the Markov chain. It quantifies what an uninformed sender is willing to

pay to become informed.

What could the app guarantee if the stochastic process was not stationary and ergodic? For a

general process, an informed app could always pass the calibration test by forecasting honestly

(black line). The app would be able to attain the mean of the utility function. On the other hand, an

uninformed app would be able to approximately attain the closed convex hull of the utility function,

i.e., 𝐶𝑜 𝑢𝑆 (𝑝) (green line). This corresponds to the worst mpc of a perfectly informed sender in the

persuasion problem. The difference between these two functions gives us the value of information

for any general process.

4 Forecasting against regret minimizers
In this section, we consider a receiver who uses regret minimization, instead of the calibration test,

as the heuristic for decision-making. Apart from that, the setting remains the same as in Section

2. At each period, the sender sends a forecast and the receiver uses a regret minimizing strategy

to take action. Regret is used as an exogenous criterion to evaluate a strategy in non-Bayesian

environments [Cesa-Bianchi and Lugosi, 2006]. It measures the difference in the average payoff a

player got and what he could have got if he had chosen a fixed action repeatedly. Regret minimizing

strategies ensure that a player has no regret in the long-run. Given the close connection between

regret and calibration (see [Perchet, 2014]), we compare what the sender can guarantee in each

case. First, we show that the sender can always achieve the solution of the persuasion problem

against a regret minimizer, as in case of the calibration test. However, we show that, in some cases,

the sender can guarantee much more when the receiver uses a mean-based learning algorithm, a

natural class of regret minimizing strategies.

A key distinction when playing against a regret minimizer is that the forecast 𝑓 no longer has

intrinsic meaning but simply acts as a message. Given our aim to compare the analysis with the

calibration test, we assume the receiver minimizes his regret for each forecast. This is a special

case of contextual regret, where the forecast acts as context or information that the receiver has

in each period. The receiver has no regret with respect to forecast 𝑓 if on the period where the

forecast was 𝑓 he cannot shift to a fixed action 𝑎∗ ∈ 𝐴 repeatedly and obtain a higher payoff. We

denote by 𝑢𝑅,𝑇 [𝑓 ] the receiver’s average payoff up to period 𝑇 when the forecast was 𝑓 , i.e.,

17
As the indirect utility function is continuous, we can choose an appropriate 𝜖 > 0 so that �̂�𝑆 (𝑓 ∗ (𝑝 ) ) ≈ �̂�𝑆 (𝑝 ) .



Calibrated Forecasting and Persuasion EC ’24, July 8–11, 2024, New Haven, CT, USA

𝑢𝑅,𝑇 [𝑓 ] :=
∑

𝑡 ∈N𝑇 [ 𝑓 ] 𝑢𝑅 (𝜔𝑡 , 𝑎𝑡 )
|N𝑇 [𝑓 ] |

. (27)

Definition 4.1. The receiver has no regret with respect to forecast 𝑓 if

lim sup

𝑇→∞

|N𝑇 [𝑓 ] |
𝑇

(
max

𝑎∗∈𝐴
𝑢𝑅 (𝜔𝑇 [𝑓 ], 𝑎∗) − 𝑢𝑅,𝑇 [𝑓 ]

)
≤ 0. (28)

The next proposition provides a justification for using the calibration test as a heuristic for

decision making.

Proposition 4.2. The receiver has no regret with respect to any forecast if he follows the recom-
mendations of a calibrated forecasting strategy.

Proof. Fix any calibrated strategy and assume the receiver plays according to the forecast

𝑎𝑡 = 𝑎(𝑓𝑡 ) almost surely. Then, the receiver’s regret with respect to forecast 𝑓 is given by:

=lim sup

𝑇→∞

|N𝑇 [𝑓 ] |
𝑇

(
max

𝑎∗∈Δ𝐴
𝑢𝑅 (𝜔𝑇 [𝑓 ], 𝑎∗) − 𝑢𝑅 (𝜔𝑇 [𝑓 ], 𝑎(𝑓 ))

)
(29)

=lim sup

𝑇→∞

|N𝑇 [𝑓 ] |
𝑇

(
max

𝑎∗∈Δ𝐴

∑︁
𝜔∈Ω

𝑓 (𝜔) [𝑢𝑅 (𝜔, 𝑎∗) − 𝑢𝑅 (𝜔, 𝑎(𝑓 ))]
)
≤ 0 (using calibration) (30)

□

For a stationary ergodic process, the highest payoff the sender can get under the calibration test

is the solution of a persuasion problem. We show that she can also guarantee this payoff when

facing a regret minimizer.

Proposition 4.3. For a stationary ergodic process 𝜇, the sender can guarantee Per (𝐶𝜇, 𝑢𝑆 ) against
a regret minimizer.

The sender can use the same optimal forecasting strategy as in the calibration test to guarantee

this payoff. The sender sends forecast 𝑓 according to optimal signaling policy 𝜋∗ (𝑓 | 𝑝) of the
persuasion problem Per (𝐶𝜇, 𝑢𝑠 ) when the conditional is 𝑝 . Given any forecast 𝑓 , if the receiver

uses an action 𝑎 ∉ 𝑎(𝑓 ) on a non-negligible fraction of periods, then he has positive regret. So, in

the long-run, to ensure no regret he has to play the fixed action 𝑎(𝑓 ) almost surely.

We now provide an example where the sender can guarantee much more. We follow the approach

used by [Deng et al., 2019] and [Braverman et al., 2018] and focus on the natural class ofmean-based
learning algorithms. This class of no-regret strategies includes Multiplicative Weights algorithm, the

Follow-the-Perturbed-Leader algorithm, and the EXP3 algorithm. Intuitively, mean-based strategies

play the action that historically performs the best. For the next result, we assume the receiver uses

a mean-based learning algorithm for a 𝑇−period game, where 𝑇 >> 0.

Definition 4.4. Let 𝜎𝑎,𝑡 =
∑𝑡

𝑠=1 𝑢𝑅 (𝜔𝑠 , 𝑎) be the cumulative payoff for action 𝑎 for the first 𝑡

periods. An algorithm is mean-based if whenever 𝜎𝑎,𝑡 < 𝜎𝑏,𝑡 − 𝛾𝑇 for some 𝑏 ∈ 𝐴, the probability

to play action 𝑎 on period 𝑡 is at most 𝛾 . An algorithm is mean-based if it is 𝛾-mean-based for some

𝛾 = 𝑜 (1).

The next theorem provides an instance where the sender can attain a payoff higher than the

calibration benchmark against a mean-based learner.
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Theorem 4.5. There exists a game in which the sender can guarantee 𝑉 > Per (𝐶𝜇, 𝑢𝑆 ) against a
mean-based learner.

Proof. Consider the following payoff matrix, which represents 𝑢𝑆 (𝜔, 𝑎) and 𝑢𝑅 (𝜔, 𝑎):

𝑎1 𝑎2 𝑎3 𝑎4
𝜔1 (2, 8) (0, 7) (4, 3) (2, 0)
𝜔2 (2, 0) (4, 3) (0, 7) (2, 8)

The receiver’s optimal action depends on her belief over the states. Let 𝑝 = P(𝜔2), it is optimal

to play 𝑎1 when 𝑝 ∈ [0, 0.25], to play 𝑎2 when 𝑝 ∈ [0.25, 0.5], to play 𝑎3 when 𝑝 ∈ [0.5, 0.75] and to
play 𝑎4 otherwise (Fig. 5). Using this, we can compute the indirect utilities 𝑢𝑅 and 𝑢𝑆 (Fig. 5 and 6).
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The state evolves according to a Markov chain with transition matrix 𝑇 (𝜔1 | 𝜔1) = 𝑇 (𝜔2 | 𝜔2) =
0.8. So, the distribution of conditionals 𝐶𝜇 has equal mass on the conditionals 20% and 80%. The

optimal signaling policy is to either forecast honestly or babble, which implies Per (𝐶𝜇, 𝑢𝑆 ) = 2 (Fig.

6). We now describe a strategy that will guarantee the sender an average payoff 𝑉 > 2.

As the receiver is a mean-based learner, he plays (with a high probability) the best response to

the distribution of states 𝜔𝑡 [𝑓 ]. This is because for any period 𝑡 , we have 𝜎
𝑓

𝑎,𝑡 = [𝑢𝑅 (𝜔𝑡 [𝑓 ], 𝑎)] × 𝑡 .

The game is divided into two stages, where the sender uses only two forecasts (or messages)

𝑙 and ℎ. For the first 𝑇
2
periods, the sender announces 𝑙 when 𝑝𝑡 = 20% and announces ℎ when

𝑝𝑡 = 80%. Based on the mean-based algorithm, the receiver responds by playing action 𝑎1 and 𝑎4
(with a high probability) on seeing forecasts 𝑙 and ℎ respectively. As 𝑇 >> 0, the sender’s average

payoff equals ≈ 2 in the first
𝑇
2
periods.

For the remaining
𝑇
2
, the sender swaps the forecasts, i.e., she announces 𝑙 when 𝑝𝑡 = 80% and

announces ℎ when 𝑝𝑡 = 20%. The empirical distribution𝜔𝑡 [𝑙] begins at 20% and gradually increases

until it reaches 50%. However, once it crosses 25%, action 𝑎2 results in the highest cumulative payoff.

Consequently, the receiver switches to playing action 𝑎2 (with a high probability). Similarly given

forecast ℎ, when the empirical distribution decreases from 75%, the receiver switches to playing

action 𝑎3. The sender’s average payoff equals ≈ 173

55
in the last

𝑇
2
periods. This is because, for most

of the
𝑇
2
periods, the receiver plays action 𝑎2 and 𝑎4 when the true distribution of states is 80% and

20% respectively. The receiver’s responses are sub-optimal and so the average payoff does not lie in
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the graph of indirect utilities 𝑢𝑆 and 𝑢𝑅 (Fig. 6). Overall, across the 𝑇 -period, the sender is able to

guarantee an average payoff 𝑉 ≈ 283

110
> 2. Thus, against a mean-based learner, the sender is able to

achieve a payoff higher than the solution of the persuasion problem. □

This example holds even in the case when the receiver does not observe the state {𝜔𝑡 }𝑡 ∈N and/or

only observes the payoff from the chosen action. Using standard tools from bandits problem, such

as inverse propensity score estimator, it is possible to build unbiased estimator of the reward of

unplayed actions [Bubeck and Cesa-Bianchi, 2012]. The main idea consists in slightly perturbing

the receiver’s strategy, say by playing randomly with some small probability. This perturbation can

actually be quite small, with probability of order 𝑇 −1/3
and even 𝑇 −1/2

, so that the actual cost of

estimation is negligible as 𝑇 increases. These techniques are now considered standard and are well

documented [Lattimore and Szepesvári, 2020].

5 Conclusion
We studied a dynamic forecasting game, where the sender maximizes her payoff given she has to

pass the calibration test. Within the class of stationary and ergodic processes, we identified the

optimal calibrated forecasting strategy. This was achieved by transforming the dynamic forecasting

game into a static persuasion problem. We showed that the dynamic interaction of a sender and a

receiver performing the calibration test substitutes for ex-ante commitment in persuasion models.

We compared what an informed and uninformed expert can attain. Additionally, we compared

regret minimization and the calibration test as heuristics for decision-making.

Many problems remain open for the setting that we study. In particular, the optimal calibrated

strategy for any stochastic process. Given this problem might be intractable, we could investigate,

for what class of stochastic processes, we can (or cannot) find a calibrated strategy that does better

than honest forecasting. Also, the complete characterization for attainable payoffs against no-regret

learners remains open. Furthermore, there are natural extensions of the model: the receiver can use

other statistical tests to verify the credibility of the sender. This raises the question of identifying

tests where honest forecasting is optimal or which minimize the extent of strategic misreporting.

Acknowledgments
Atulya Jain expresses gratitude to Tristan Tomala, Nicolas Vieille, and Frédéric Koessler for their

invaluable advice and encouragement throughout the project, and to Jérôme Renault for his useful

comments and feedback. The research conducted by Atulya Jain was supported by the DATAIA

convergence institute as part of the Programme d’Investissement d’Avenir (ANR-17-CONV-0003)

operated by HEC Paris and partially funded by the Hi! PARIS Center on Data Analytics and Artificial

Intelligence.

References
Itai Arieli, Yakov Babichenko, Rann Smorodinsky, and Takuro Yamashita. 2023. Optimal persuasion via bi-pooling. Theoretical

Economics 18, 1 (2023), 15–36.
Robert J Aumann, Michael Maschler, and Richard E Stearns. 1995. Repeated games with incomplete information. MIT press.

Andrey Bernstein, Shie Mannor, and Nahum Shimkin. 2014. Opportunistic approachability and generalized no-regret

problems. Mathematics of Operations Research 39, 4 (2014), 1057–1083.

James Best and Daniel Quigley. 2022. Persuasion for the long run. Available at SSRN 2908115 (2022).
David Blackwell. 1953. Equivalent Comparisons of Experiments. The Annals of Mathematical Statistics 24, 2 (1953), 265–272.
Mark Braverman, Jieming Mao, Jon Schneider, and Matt Weinberg. 2018. Selling to a No-Regret Buyer. In Proceedings of the

2018 ACM Conference on Economics and Computation (Ithaca, NY, USA) (EC ’18). Association for Computing Machinery,

New York, NY, USA, 523–538. https://doi.org/10.1145/3219166.3219233

Sébastien Bubeck and Nicolò Cesa-Bianchi. 2012. Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit

Problems. Foundations and Trends® in Machine Learning 5, 1 (2012), 1–122. https://doi.org/10.1561/2200000024

https://doi.org/10.1145/3219166.3219233
https://doi.org/10.1561/2200000024


EC ’24, July 8–11, 2024, New Haven, CT, USA Atulya Jain and Vianney Perchet

Nicolo Cesa-Bianchi and Gábor Lugosi. 2006. Prediction, learning, and games. Cambridge university press.

Vincent P. Crawford and Joel Sobel. 1982. Strategic Information Transmission. Econometrica 50, 6 (1982), 1431–1451.

http://www.jstor.org/stable/1913390

A Philip Dawid. 1982. The well-calibrated Bayesian. J. Amer. Statist. Assoc. 77, 379 (1982), 605–610.
Yuan Deng, Jon Schneider, and Balasubramanian Sivan. 2019. Strategizing against No-regret Learners. In Advances in Neural

Information Processing Systems, H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (Eds.),

Vol. 32. Curran Associates, Inc. https://proceedings.neurips.cc/paper/2019/file/8b6dd7db9af49e67306feb59a8bdc52c-

Paper.pdf

Piotr Dworczak and Giorgio Martini. 2019. The Simple Economics of Optimal Persuasion. Journal of Political Economy 127,

5 (2019), 1993–2048.

Federico Echenique and Eran Shmaya. 2007. You won’t harm me if you fool me. Working Papers 1281. California Institute of

Technology, Division of the Humanities and Social Sciences. https://EconPapers.repec.org/RePEc:clt:sswopa:1281

J Elton and T.P Hill. 1998. On the Basic Representation Theorem for Convex Domination of Measures. Journal of mathematical
analysis and applications 228, 2 (1998), 449–466.

J. Elton and T. P. Hill. 1992. Fusions of a Probability Distribution. The Annals of Probability 20, 1 (1992), 421–454.

Dean P Foster and Sergiu Hart. 2021. Forecast hedging and calibration. Journal of Political Economy 129, 12 (2021), 3447–3490.
Dean P Foster, Alexander Rakhlin, Karthik Sridharan, and Ambuj Tewari. 2011. Complexity-based approach to calibration

with checking rules. In Proceedings of the 24th Annual Conference on Learning Theory. JMLR Workshop and Conference

Proceedings, 293–314.

Dean P Foster and Rakesh Vohra. 1998. Asymptotic Calibration. Biometrika 85, 2 (1998), 379–390. http://www.jstor.org/

stable/2337364

Dean P Foster and Rakesh Vohra. 2013. Calibration: Respice, adspice, prospice. In Advances in Economics and Econometrics:
Tenth World Congress, Vol. 1. Cambridge University Press, 423–442.

Ronen Gradwohl and Yuval Salant. 2011. How to Buy Advice with Limited Instruments. Available at SSRN 1791750 (2011).
Yingni Guo and Eran Shmaya. 2021. Costly Miscalibration. Available at Theoretical economics (2021). https://econtheory.

org/ojs/index.php/te/article/viewForthcomingFile/3991/28098/1

Chirag Gupta and Aaditya Ramdas. 2021. Top-label calibration and multiclass-to-binary reductions. In International
Conference on Learning Representations.

Kallenberg. 2002. Foundations of Modern Probability. Springer New York.

Emir Kamenica and Matthew Gentzkow. 2011. Bayesian Persuasion. American Economic Review 101, 6 (October 2011),

2590–2615. https://doi.org/10.1257/aer.101.6.2590

Bobby Kleinberg, Renato Paes Leme, Jon Schneider, and Yifeng Teng. 2023. U-calibration: Forecasting for an unknown

agent. In The Thirty Sixth Annual Conference on Learning Theory. PMLR, 5143–5145.

Andreas Kleiner, Benny Moldovanu, and Philipp Strack. 2021. Extreme points and majorization: Economic applications.

Econometrica 89, 4 (2021), 1557–1593.
Anton Kolotilin. 2018. Optimal information disclosure: A linear programming approach. Theoretical Economics 13, 2 (2018),

607–635.

Aditya Kuvalekar, Elliot Lipnowski, and Joao Ramos. 2022. Goodwill in communication. Journal of Economic Theory 203

(2022), 105467.

Tor Lattimore and Csaba Szepesvári. 2020. Bandit algorithms. Cambridge University Press.

Tao Lin and Yiling Chen. 2024. Generalized Principal-Agent Problem with a Learning Agent. arXiv preprint arXiv:2402.09721
(2024).

Shie Mannor and Gilles Stoltz. 2010. A geometric proof of calibration. Mathematics of Operations Research 35, 4 (2010),

721–727.

Shie Mannor, John N Tsitsiklis, and Jia Yuan Yu. 2009. Online Learning with Sample Path Constraints. Journal of Machine
Learning Research 10, 3 (2009).

StephenMorris and Philipp Strack. 2019. TheWald Problem and the Relation of Sequential Sampling and Ex-Ante Information

Costs. (2019). https://ssrn.com/abstract=2991567orhttp://dx.doi.org/10.2139/ssrn.2991567

Wojciech Olszewski. 2015. Calibration and Expert Testing. In Handbook of Game Theory with Economic Applications. Vol. 4.
Elsevier B.V, 949–984.

Wojciech Olszewski and Marcin Pęski. 2011. The Principal-Agent Approach to Testing Experts. American Economic Journal:
Microeconomics 3, 2 (2011), 89–113. http://www.jstor.org/stable/41237186

Lionel Page and Robert T. Clemen. 2012. Do Prediction Markets Produce Well-Calibrated Probability Fore-

casts? The Economic Journal 123, 568 (12 2012), 491–513. https://doi.org/10.1111/j.1468-0297.2012.02561.x

arXiv:https://academic.oup.com/ej/article-pdf/123/568/491/26445200/ej0491.pdf

Vianney Perchet. 2014. Approachability, regret and calibration: Implications and equivalences. Journal of Dynamics and
Games 1, 2 (2014), 181–254.

http://www.jstor.org/stable/1913390
https://proceedings.neurips.cc/paper/2019/file/8b6dd7db9af49e67306feb59a8bdc52c-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/8b6dd7db9af49e67306feb59a8bdc52c-Paper.pdf
https://EconPapers.repec.org/RePEc:clt:sswopa:1281
http://www.jstor.org/stable/2337364
http://www.jstor.org/stable/2337364
https://econtheory.org/ojs/index.php/te/article/viewForthcomingFile/3991/28098/1
https://econtheory.org/ojs/index.php/te/article/viewForthcomingFile/3991/28098/1
https://doi.org/10.1257/aer.101.6.2590
https://ssrn.com/abstract=2991567 or http://dx.doi.org/10.2139/ssrn.2991567
http://www.jstor.org/stable/41237186
https://doi.org/10.1111/j.1468-0297.2012.02561.x
https://arxiv.org/abs/https://academic.oup.com/ej/article-pdf/123/568/491/26445200/ej0491.pdf


Calibrated Forecasting and Persuasion EC ’24, July 8–11, 2024, New Haven, CT, USA

Jérôme Renault, Eilon Solan, and Nicolas Vieille. 2013. Dynamic sender–receiver games. Journal of Economic Theory 148, 2

(2013), 502–534. https://doi.org/10.1016/j.jet.2012.07.006

Joseph Whitmeyer and Mark Whitmeyer. 2021. Mixtures of mean-preserving contractions. Journal of Mathematical
Economics 94 (2021), 102450. https://doi.org/10.1016/j.jmateco.2020.11.006

https://doi.org/10.1016/j.jet.2012.07.006
https://doi.org/10.1016/j.jmateco.2020.11.006


EC ’24, July 8–11, 2024, New Haven, CT, USA Atulya Jain and Vianney Perchet

A Omitted Results and Proofs
A.1 Proposition A.1

Proposition A.1. There exists a sequence of error margins {𝜖𝑇 }∞𝑇=1 such that lim𝑇→∞ 𝜖𝑇 = 0 and
an honest sender only fails the 𝜖𝑇 -calibration test finitely many time almost surely.

Proof. Let

𝑑
𝑓

𝑇 = 1{ 𝑓𝑡=𝑓 } (𝛿𝜔𝑡
− 𝑓 ), 𝑥

𝑓

𝑇
=

1

𝑇

𝑇∑︁
𝑡=1

𝑑
𝑓

𝑇 . (31)

If the calibration error

∑
𝑓 ∈𝐹 ∥𝑥 𝑓

𝑇
∥ is greater than the error margin 𝜖𝑇 , then the sender fails the

calibration test in period𝑇 . Let’s consider an honest sender who predicts the conditional probability,

i.e., 𝑓𝑡 = 𝑝𝑡 for all 𝑡 ∈ N. Then, 𝑑
𝑓

𝑇 is a martingale difference sequence adapted to the process 𝜇. We

have E[𝑑 𝑓

𝑇 ] = 0 and that ∥𝑑 𝑓

𝑇 ∥ ≤ 1 a.s.. Using Lemma 3 of [Foster et al., 2011], we have

P(∥𝑥 𝑓

𝑇
∥ ≥ 𝜖𝑇 ) ≤ 2𝑒

𝑇𝜖2
𝑇

8𝑐

for some constant 𝑐 > 0.

The Borel-Cantelli lemma states that if the sum of the probability of a sequence of events is finite

then the probability that infinitely many of them occur is zero. Given the forecasts exactly match

with the conditionals, where |𝐷 | < ∞, we can put a bound on the event 𝐸𝑇 = (P(max𝑓 ∈𝐷 )∥𝑥 𝑓

𝑇
∥ ≥

𝜖𝑇 ). This bound represents the probability that the honest sender fails the calibration test in

period 𝑇 . Taking the sum across all periods, we have

∑∞
𝑇=1 P(𝐸𝑇 ) =

∑∞
𝑇=1 P(max𝑓 ∈𝐷 ∥𝑥 𝑓

𝑇
∥ > 𝜖𝑇 ) ≤∑∞

𝑇=1 𝑒
−𝑇𝜖2

𝑇
8𝑐 . Choosing 𝜖𝑇 = 𝑜 (𝑇 − 1

3 ) suffices to complete the proof. We have shown that the honest

sender only fails the calibration test in finitely many periods. □

A.2 Proof of Proposition 3.3
The proof relies on the simple characterization of the set of mean-preserving contractionsM(𝑃),
when 𝑆𝑢𝑝𝑝 (𝑃) is affinely independent. We show in the following Proposition that a probability

distribution is a smpc if and only if the mean remains fixedB(𝑃) = B(𝑄) and𝑞 ∈ 𝐶𝑜 (𝑆𝑢𝑝𝑝 (𝑃))∀𝑞 ∈
𝑆𝑢𝑝𝑝 (𝑄). This feasibility condition only holds when the support is affinely independent. The

feasibility condition for distribution 𝑄 simply boils down to Bayes plausibility in the restricted

domain. So, using the results of [Kamenica and Gentzkow, 2011], this implies that that the solution

of the persuasion problem is given by the concave envelope restricted to 𝐶𝑜 (𝑆𝑢𝑝𝑝 (𝑃)).

Proposition A.2. Suppose 𝑆𝑢𝑝𝑝 (𝑃) is affinely independent, then

𝑄 ∈ M(𝑃) ⇐⇒ 𝑆𝑢𝑝𝑝 (𝑄) ⊂ 𝐶𝑜 (𝑆𝑢𝑝𝑝 (𝑃)) and B(𝑃) = B(𝑄) (32)

Proof. (⇐) Choose a (finite) probability distribution 𝑄 such that 𝑆𝑢𝑝𝑝 (𝑄) ⊂ 𝐶𝑜 (𝑆𝑢𝑝𝑝 (𝑃)) and
B(𝑃) = B(𝑄). For all 𝑞 ∈ 𝑆𝑢𝑝𝑝 (𝑄), we can write 𝑞 as a convex combination of 𝑆𝑢𝑝𝑝 (𝑃).

𝑓𝑗 =

𝑛∑︁
𝑖=1

𝛼𝑖 𝑗𝑝𝑖 such that 𝛼𝑖 𝑗 ≥ 0,

𝑛∑︁
𝑖=1

𝛼𝑖 𝑗 = 1 ∀𝑖 ∈ {1, ..., 𝑛}, 𝑗 ∈ {1, ...,𝑚}, (33)

𝑚∑︁
𝑗=1

𝜇 𝑗 𝑓𝑗 =

𝑚∑︁
𝑗=1

𝑛∑︁
𝑖=1

𝜇 𝑗𝛼𝑖 𝑗𝑝𝑖 . (34)

Under our assumption, we have B(𝑃) = B(𝑄), i.e.,
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𝑛∑︁
𝑖=1

𝜆𝑖𝑝𝑖 =

𝑚∑︁
𝑗=1

𝜇 𝑗 𝑓𝑗 . (35)

Combining this with the above equation we get

𝑛∑︁
𝑖=1

(
𝜆𝑖 −

𝑚∑︁
𝑗=1

𝜇 𝑗𝛼𝑖 𝑗
)
𝑝𝑖 = 0. (36)

As 𝑆𝑢𝑝𝑝 (𝑃) is affinely independent, we have

⇒ 𝜆𝑖 =

𝑚∑︁
𝑗=1

𝜇 𝑗𝛼𝑖 𝑗 ∀𝑖 ∈ {1, .., 𝑛}. (37)

Let𝐺𝑖 𝑗 =
𝜇 𝑗𝛼𝑖 𝑗

𝜆𝑖
. The matrix𝐺 is a row-stochastic. Using this matrix, we show that the distribution

𝑄 is a simple mean-preserving contraction of the distribution 𝑃 . Formally, we show it satisfies

equation (6):

𝑛∑︁
𝑖=1

𝜆𝑖𝐺𝑖 𝑗 =

𝑛∑︁
𝑖=1

𝜇 𝑗𝛼𝑖 𝑗 , (38)

= 𝜇 𝑗 . (39)

Also, we show it satisfies equation (7):

𝑛∑︁
𝑖=1

𝜆𝑖𝑝𝑖𝐺𝑖 𝑗 =

𝑛∑︁
𝑖=1

𝜇 𝑗𝑝𝑖𝛼𝑖 𝑗 , (40)

= 𝜇 𝑗 𝑓𝑗 . (41)

(⇒) Given each 𝑓𝑗 is constructed by merging weights of 𝑆𝑢𝑝𝑝 (𝑃), it is necessary that 𝑓𝑗 ∈
𝐶𝑜 (𝑆𝑢𝑝𝑝 (𝑃)). We only need to show that B(𝑃) = B(𝑄). Assume 𝑄 ∈ M(𝑃), so we know that

there exists a row-stochastic matrix 𝐺 such that:

𝜇 𝑗 𝑓𝑗 =

𝑛∑︁
𝑖=1

𝜆𝑖𝑝𝑖𝐺𝑖 𝑗 ∀𝑗 ∈ {1, ...,𝑚}, (42)

B(𝑄) =
𝑚∑︁
𝑗=1

𝜇 𝑗 𝑓𝑗 =

𝑚∑︁
𝑗=1

𝑛∑︁
𝑖=1

𝜆𝑖𝑝𝑖𝐺𝑖 𝑗 , (43)

=

𝑚∑︁
𝑖=1

𝜆𝑖𝑝𝑖 = B(𝑃). (44)

□

A.3 Proof of Lemma 3.3
(⇒) First, we show that if the forecasting strategy 𝜎 is calibrated, then equation (17) holds. We have
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|𝑁𝑇 [𝑓 ] |
𝑇

∥ 𝑓 −
∑︁
𝑝∈𝐷

𝑝𝜇𝑇 (𝑓 , 𝑝)∥ (45)

≤ |𝑁𝑇 [𝑓 ] |
𝑇

∥ 𝑓 −
∑𝑇

𝑡=1 1{ 𝑓𝑡=𝑓 }𝛿𝜔𝑡∑𝑇
𝑡=1 1{ 𝑓𝑡=𝑓 }

∥ + ∥
∑𝑇

𝑡=1

∑
𝑝∈𝐷 1{ 𝑓𝑡=𝑓 ,𝑝𝑡=𝑝 } [𝛿𝜔𝑡

− 𝑝]
𝑇

∥ (46)

Both the terms converge to zero as 𝑇 → ∞. The first term vanishes from our assumption that

the strategy is calibrated. For the second term, we apply Azuma-Hoeffding inequality. Let

𝑥𝑇 =

∑
𝑝∈𝐷

∑𝑇
𝑡=1 1{ 𝑓𝑡=𝑡,𝑝𝑡=𝑝 } [𝛿𝜔𝑡

− 𝑝]
𝑇

.

We have E[𝑥𝑇 ] = 0 and that ∥𝑥𝑇 − 𝑥1∥ ≤ 1. Using the Azuma-Hoeffding inequality, we have

P(∥𝑥𝑇 ∥ > 𝜂) ≤ exp
−2𝑇𝜂2

. Choosing 𝜂 = 𝑜 (𝑇 − 1

3 ) suffices in our case.

(⇐) For the converse, we apply the triangle inequality to show that the if equation (17) holds,

then the forecasting strategy is calibrated. The calibration error is given by

|𝑁𝑇 [𝑓 ] |
𝑇

∥ 𝑓 −
∑𝑇

𝑡=1 1{ 𝑓𝑡=𝑓 }𝛿𝜔𝑡∑𝑇
𝑡=1 1{ 𝑓𝑡=𝑓 }

∥ (47)

≤ |𝑁𝑇 [𝑓 ] |
𝑇

∥ 𝑓 −
∑︁
𝑝

𝑝𝜇𝑇 (𝑓 , 𝑝)∥ + ∥
∑𝑇

𝑡=1

∑
𝑝 1{ 𝑓𝑡=𝑡,𝑝𝑡=𝑝 } [𝛿𝜔𝑡

− 𝑝]
𝑇

∥ (48)

As 𝑇 goes to infinity, the first term goes to zero from assumption and the second terms goes to

zero due to the Azuma-Hoeffding inequality.

A.4 Proof of Lemma A.3
Lemma A.3. For a stationary ergodic process 𝜇, the distribution of conditionals 𝐶𝜇 exists and is

constant 𝜇-a.s.

Proof. Consider the two-sided extension of the stationary process i.e., 𝜇 ∈ Δ(ΩZ). Let 𝜔𝑏
𝑎 =

(𝜔𝑎, ....., 𝜔𝑏−1) where 𝑎 < 𝑏 − 1.

𝑓𝑛 = 𝜇 (𝜔0 = · | 𝜔0

−𝑛), (49)

𝑓∞ = 𝜇 (𝜔0 = · | 𝜔0

−∞). (50)

Using the martingale convergence theorem we have that 𝑓𝑛 → 𝑓∞ 𝜇-a.s.. Given 𝜇 is stationary,

using the shift transformation 𝑇 , we have

𝑓𝑛 ◦𝑇𝑛 = 𝜇 (𝜔𝑛 = · | 𝜔𝑛
0
) = 𝑝𝑛 . (51)

Since 𝑓𝑛 and 𝑝𝑛 = 𝑓𝑛 ◦ 𝑇𝑛
have the same distribution for all 𝑛 ∈ N+

, we can conclude that

𝑝𝑛 → 𝑝∞ = 𝜇 (𝜔∞ = · | 𝜔∞
0
) 𝜇-a.s. and E[𝜇 (𝜔0 = · | 𝜔0

−∞)] = E[𝜇 (𝜔∞ = · | 𝜔∞
0
)]. Now, as 𝜇 is

stationary and ergodic, we apply the Maker’s Ergodic theorem to get:

lim

𝑁→∞

1

𝑁

𝑁−1∑︁
𝑛=0

𝜇 (𝜔𝑛 = · | 𝜔𝑛
0
) = E[𝜇 (𝜔∞ = · | 𝜔∞

0
)] 𝜇 − 𝑎.𝑠 . (52)
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In particular, this implies for any 𝑝 ∈ 𝐷 , we have

𝐶𝜇 (𝑝) = lim

𝑁→∞

1

𝑁

𝑁−1∑︁
𝑛=0

1{𝑝𝑛=𝑝 } = E[1{𝑝∞=𝑝 }] 𝜇 − 𝑎.𝑠 . (53)

For reference, the Maker’s Ergodic Theorem [Kallenberg, 2002]:

Theorem A.4. (Maker’s Ergodic Theorem) Let 𝜇 ∈ ΔΓ be a stationary distribution and let 𝑓0, 𝑓1, ... :
Γ → R be such that 𝑠𝑢𝑝𝑛 |𝑓𝑛 | ∈ 𝐿1 (𝜇) and 𝑓𝑛 → 𝑓∞ 𝜇-a.s. Then

lim
𝑁→∞

1

𝑁

𝑁−1∑︁
𝑛=0

𝑓𝑛 ◦𝑇𝑛 → E[𝑓∞ | I] 𝜇 − 𝑎.𝑠 . (54)

□

A.5 Proof of Lemma 3.2
First, we show that for any calibrated strategy 𝜎 , the resultant distribution of forecasts 𝐹𝜇,𝜎 is a

mpc of the distribution of conditionals 𝐶𝜇 , i.e., 𝐹𝜇,𝜎 ∈ M(𝐶𝜇). Given 𝐶𝜇 , consider

∑︁
𝑓 ∈𝐹

∥
∑𝑇

𝑡=1 1{ 𝑓𝑡=𝑓 }
𝑇

𝑓 −
∑︁
𝑝

𝑝𝐶𝜇 (𝑝)
∑𝑇

𝑡=1 1{ 𝑓𝑡=𝑓 ,𝑝𝑡=𝑝 }∑𝑇
𝑡=1 1{𝑝𝑡=𝑝 }

∥ (55)

≤
∑︁
𝑓 ∈𝐹

∥
∑𝑇

𝑡=1 1{ 𝑓𝑡=𝑓 }
𝑇

𝑓 −
∑︁
𝑝

𝑝

∑𝑇
𝑡=1 1{ 𝑓𝑡=𝑓 ,𝑝𝑡=𝑝 }

𝑇
∥ +

∑︁
𝑓 ∈𝐹

∑︁
𝑝

𝑝 (
∑𝑇

𝑡=1 1{ 𝑓𝑡=𝑓 ,𝑝𝑡=𝑝 }
𝑇

)∥1 −
𝐶𝜇 (𝑝)𝑇∑𝑇
𝑡=1 1{𝑝𝑡=𝑝 }

∥ .

(56)

From Lemma 3.3, we have that the first term goes to zero as 𝑇 → ∞. The second term also goes

to zero as the distribution of conditionals 𝐶𝜇 exists. Thus, we have

lim sup

𝑇→∞

∑︁
𝑓 ∈𝐹

∥
∑𝑇

𝑡=1 1{ 𝑓𝑡=𝑓 }
𝑇

𝑓 −
∑︁
𝑝

𝑝𝐶𝜇 (𝑝)
∑𝑇

𝑡=1 1{ 𝑓𝑡=𝑓 ,𝑝𝑡=𝑝 }∑𝑇
𝑡=1 1{𝑝𝑡=𝑝 }

∥ = 0 (57)

For any 𝑛 ∈ N, let the row stochastic matrix 𝐺𝑛 (𝑓 , 𝑝) be equal to
∑𝑛

𝑡=1 1{𝑓𝑡 =𝑓 ,𝑝𝑡 =𝑝}∑𝑇
𝑡=1 1{𝑝𝑡 =𝑝}

. This matrix will

result in a simple mean-preserving contraction 𝐹𝑛 ∈ M(𝑃) for each 𝑛. As Δ(ΔΩ) is compact, we

know there exists a subsequence 𝑛1, 𝑛2, .... such that this distribution 𝐹𝑛 converges to a limit point 𝐹 ,

i.e., 𝐹 = lim𝑡→∞ 𝐹𝑛𝑡 . However, from equation (57), this implies that the distribution of forecasts also

converges to 𝐹 . Thus, from definition 3.2, as 𝐹 is a limit of the sequence of simple mean-preserving

contractions, we have 𝐹 ∈ M(𝐶𝜇).
On the other hand, let 𝐹 ∈ M(𝐶𝜇). Given Lemma A.3, the sender knows the distribution of

conditionals 𝐶𝜇 . Let 𝜋 : ΔΩ → Δ(ΔΩ) be the signaling policy that given prior 𝐶𝜇 results in the

distribution 𝐹 . Consider the forecasting strategy given by 𝜎𝑡 (𝑓𝑡 = 𝑓 | 𝑝𝑡 = 𝑝) = 𝜋 (𝑓 | 𝑝) for all 𝑡 .
We show the forecasting strategy 𝜎 is calibrated. For any 𝑓 ∈ 𝑆𝑢𝑝𝑝 (𝐹 ), we have
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|𝑁𝑇 [𝑓 ] |
𝑇

∥
∑𝑇

𝑡=1 1{ 𝑓𝑡=𝑓 }𝛿𝜔𝑡∑𝑇
𝑡=1 1{ 𝑓𝑡=𝑓 }

− 𝑓 ∥ (58)

≤∥
∑

𝑝

∑𝑇
𝑡=1 1{ 𝑓𝑡=𝑓 ,𝑝𝑡=𝑝 } [𝛿𝜔𝑡

− 𝑝]
𝑇

∥ + ∥
∑

𝑝∈𝑃
∑𝑇

𝑡=1 1{ 𝑓𝑡=𝑓 ,𝑝𝑡=𝑝 } (𝑝 − 𝑓 )
𝑇

∥ (59)

≤∥
∑

𝑝

∑𝑇
𝑡=1 1{ 𝑓𝑡=𝑓 ,𝑝𝑡=𝑝 } [𝛿𝜔𝑡

− 𝑝]
𝑇

∥ + ∥
∑

𝑝

∑𝑇
𝑡=1 1{𝑝𝑡=𝑝 }𝜋 (𝑓 | 𝑝) [𝑝 − 𝑓 ]]

𝑇
∥ (60)

Again, using the Azuma-Hoeffding inequality, the first term vanishes to zero. For the second

term, we know that𝐶𝜇 is well defined and constant, so the second term also converges to zero from

the definition of mean-preserving contraction. Hence, we have proved that for a stationary ergodic

process, the sender can implement any distribution 𝐹 ∈ M(𝐶𝜇).

A.6 Proof of Theorem 3.5
We first show that the function 𝐶𝑜 𝑢𝑆 (𝑓 ∗ (𝑝)) is attainable. Then, we show that is the highest

continuous attainable function.

(a) The main idea of the proof is to combine the payoff and calibration cost function such that

the overall set is a closed and convex set (a similar proof can be found in [Mannor et al., 2009]).

Then, we use the dual condition of approachability to show that the set is approachable.

Given forecast 𝑓 ∈ 𝐹𝜖 and state 𝜔 ∈ Ω the calibration cost is given by:

𝑐 (𝑓 , 𝜔) = (0, ..., 𝑓 − 𝛿𝜔 , ...., 0) ∈ R |𝐹𝜖 | |Ω | . (61)

It is a vector of |𝐹𝜖 | elements of size R |Ω |
with one non-zero element (at the position for 𝑓 ) while

the rest are equal to 0 ∈ R |Ω |
. The 𝜖-calibration condition (2.2) can be rewritten as follows: the

average of the sequence of vector-valued calibration costs 𝑐𝑡 = 𝑐 (𝑓𝑡 , 𝜔𝑡 ) converges to the set 𝐸𝜖
almost surely, where

𝐸𝜖 = {𝑥 ∈ R |𝐹𝜖 | |Ω |
:

∑︁
𝑓 ∈𝐹

∥𝑥
𝑓
∥ ≤ 𝜖}.

For each period 𝑡 , the sender and nature simultaneously choose 𝑓𝑡 ∈ 𝐹𝜖 and 𝜔𝑡 ∈ Ω respectively.

This results in a reward 𝑟𝑡 = 𝑢𝑆 (𝑓𝑡 ) and penalty 𝑐𝑡 = 𝑐 (𝑓𝑡 , 𝜔𝑡 ) for the sender in period 𝑡 .

Unlike the (exact) calibration test, the forecast and the limit empirical distribution of states do

not have to exactly match but can differ up to an error margin 𝜖 . Even an informed sender who

sends forecast honestly can fail the exact calibration test if she was restricted to send forecasts

from the finite set 𝐹𝜖 .

We now show the function 𝐶𝑜 𝑢𝑆 (𝑓 ∗ (𝑝)) is attainable. We show this using the dual condition of

approachability. For any period 𝑡 , consider the vector-valued payoff𝑚(𝑓𝑡 , 𝜔𝑡 ) constructed using

the sender’s payoff and the calibration cost:

𝑚(𝑓𝑡 , 𝜔𝑡 ) := (𝑟𝑡 , 𝑐𝑡 , 𝛿𝜔𝑡
) ∈ R × R |𝐹𝜖 | |Ω | × ΔΩ. (62)

Now, consider the sets:

𝐷1 = {(𝑟, 𝑐, 𝑝) ∈ 𝐷 : 𝑟 ≥ 𝐶𝑜 𝑢𝑆 (𝑓 ∗ (𝑝))} 𝐷2 = {(𝑟, 𝑐, 𝑝) ∈ 𝐷 : 𝑐 ∈ 𝐸𝜖 }. (63)

and let 𝐷∗ = 𝐷1 ∩ 𝐷2. The set 𝐷
∗
is closed and convex. To show the average of the sequence

of the vector 𝑚(𝑓𝑡 , 𝜔𝑡 ) approaches 𝐷∗
, we need to verify the dual condition of approachability

[Blackwell, 1953] is satisfied, i.e., for any 𝑝 ∈ Δ(Ω)∃𝜇 ∈ Δ(𝐹𝜖 ) such that𝑚(𝜇, 𝑝) ∈ 𝐷∗
. We have
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𝑚(𝜇, 𝑝) = (
∑︁
𝜔,𝑓

𝜇 (𝑓 )𝑢𝑆 (𝑓 ),
∑︁
𝜔,𝑓

𝜇 (𝑓 )𝑝 (𝜔)𝑐 (𝑓 , 𝜔), 𝑝) ∈ 𝐷∗ . (64)

By definition 𝑓 ∗ (𝑝) satisfies Condition (64) and the set 𝐷∗
is approachable. The set 𝐷1 ensures

that the sender can attain 𝐶𝑜 𝑢𝑆 (𝑓 ∗ (𝑝)) while the set 𝐷2 ensures that the 𝜖-calibration condition is

met.

Moreover, approachability theory provides convergence rates of the vector payoff (see [Mannor

and Stoltz, 2010]). For every strategy of nature and for every 𝛿 > 0 , with probability at least 1 − 𝛿 ,

we have

∑︁
𝑓 ∈𝐹𝜖

|N𝑇 [𝑓 ] |
𝑇

∥𝜔𝑇 [𝑓 ] − 𝑓 ∥ ≤ 𝜖 + 𝛾
√︁
|Ω |

√︂
log (1/𝛿)
𝜖 ( |Ω |−1)𝑇

(65)

for some constant 𝛾 > 0.

(b) Now, we show that the function 𝐶𝑜 𝑢𝑆 (𝑓 ∗ (𝑝)) is the highest continuous attainable function.
We construct nature’s strategy 𝜏 that prevents the sender from attaining 𝑟 . Let {𝑝 𝑗 }𝑘𝑗=1 denote the
support points corresponding to the closed convex hull, i.e., 𝐶𝑜 𝑢𝑆 (𝑓 ∗ (𝑝)) =

∑𝑘
𝑗=1 𝛼 𝑗𝑢𝑆 (𝑓 ∗ (𝑝 𝑗 )).

From Caratheodory’s Theorem we can take 𝑘 to be equal to |Ω | + 2. Consider a game with𝑇 periods

where nature plays in a sequence of 𝑘 blocks, where the size of block 𝑙 is 𝛼𝑙𝑇 . In block 𝑙 , nature

plays i.i.d. according to 𝑝𝑙 .

First, we show that for any i.i.d process with distribution 𝑝 the only forecasting strategy that

passes the 𝜖−calibration test sends the pure forecast 𝑓 ∗ (𝑝) almost surely. In other words, a sender

cannot send a forecast 𝑓 ≠ 𝑓 ∗ (𝑝) (with positive probability) and pass the 𝜖− calibration test. From

the calibration condition and the law of large numbers, we have

lim sup

𝑇→∞

|N𝑇 [𝑓 ] |
𝑇

∥ 𝑓 − 𝑝 ∥ > 𝜖 ∀𝑓 ≠ 𝑓 ∗ (𝑝) (66)

Now, consider sender’s play in any block 𝑙 . We claim that for the sender to pass the overall

calibration test, she has to pass the test in block 𝑙 and thus can only send the forecast 𝑓 ∗ (𝑝𝑙 ) almost

surely. Assume that is not the case and let 𝑙 denote the first block where the sender’s strategy is

not calibrated. Then, we have

lim sup

𝑇→∞

∑︁
𝑓 ∈𝐹𝜖

|N𝑛𝑙𝑇 [𝑓 ] |
𝑛𝑙𝑇

∥𝜔𝑛𝑙𝑇 [𝑓 ] − 𝑓 ∥ > 𝜖

where, 𝑛𝑙 =
∑𝑙

𝑗=1 𝛼 𝑗 . If this happens, then nature can play according to 𝛿𝜔 for the rest of the

game, where 𝛿𝜔 ≠ 𝑝 𝑗 for 𝑗 = 1, ..., 𝑙 . Even if the sender repeatedly forecasts 𝛿𝜔 , the calibration cost

will be positive. Even if the sender knew the sequence 𝑝1, ..., 𝑝𝑘 in advance, she could not guarantee

a higher payoff without failing the calibration test. Using this block strategy, nature restricts the

sender to announce forecast 𝑓 ∗ (𝑝𝑙 ) in each block 𝑙 . Thus, under nature’s strategy 𝜏 , the sender’s

average payoff cannot be higher than 𝐶𝑜 𝑢𝑆 (𝑓 ∗ (𝑝)) =
∑𝑘

𝑗=1 𝛼 𝑗𝑢𝑆 (𝑓 ∗ (𝑝𝑙 )), where 𝑝 is the empirical

distribution of the states.

A.7 Proof of Lemma 3.6
We use the notion of opportunistic approachability, which was developed in [Bernstein et al., 2014].

They devise algorithms that in addition to approaching the convex hull of the target set, seek to
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approach strict subsets thereof when the opponent’s play turns out to be restricted in an appropriate

sense (either statistically or empirically).

Definition A.5. The play of the opponent is empirically 𝑄-restricted with respect to a partition

{𝜋𝑚}, if there exists a convex subset 𝑄 ⊂ Δ(𝐵) such that, for the given sample path

lim

𝑀→∞

1

𝑛𝑀

𝑀∑︁
𝑚=1

𝜋𝑚𝑑𝑖𝑠𝑡 (𝜔𝑚, 𝑄) = 0 (67)

where, 𝜋𝑚 denote the length of block𝑚, 𝑛𝑀 =
∑𝑀

𝑚=1 𝜋𝑚 denotes the period at the end of the

block𝑀 and 𝜔𝑚 denotes the empirical distribution of states in block𝑚.

[Bernstein et al., 2014] (see Theorem 5) show that if nature’s play is empirically 𝑄-restricted

with respect to a partition with subexponentially increasing blocks, then

lim

𝑛→∞
𝑑 (𝑟𝑛, 𝑅+ (𝑄)) = 0 where, 𝑅+ (𝑄) = ∩𝜖>0𝐶𝑜{𝑢𝑆 (𝑝) : 𝑑 (𝑝,𝑄) ≤ 𝜖} (68)

Here, 𝑅+ (𝑄) denotes the closed convex image of the indirect utility restricted to the set 𝑄 . If

𝑄 = Δ(Ω), then we obtain the same bounds as in the case of an adversarial environment.

Given 𝜂 > 0, let 𝑁𝜂 (𝑝) denote the 𝜂−neighborhood around 𝑝 where 𝑝 is the empirical distribution

of states. We show that for a stationary ergodic process the play is empirically 𝑁𝜂 (𝑝)-restricted
with respect to a partition with finite blocks 𝜋 . This results directly from the ergodic theorem:

given any 𝜂 > 0, there exists 𝜋𝜔 ∈ N such that for all �̃� ≥ 𝜋𝜔 we have

| 1
�̃�

�̃�∑︁
𝑡=1

1{𝜔𝑡=𝜔 } − 𝑝 (𝜔) | ≤ 𝜂 (69)

The empirical distribution 𝑝 exists and is constant for a stationary ergodic process. Choosing

𝜋∗ = max

𝜔∈Ω
𝜋𝜔 as the block size ensures that nature’s play in each block is empirically restricted to

𝑁𝜂 (𝑝). This implies that the average reward function 𝑟𝑛 converges to 𝑅+ (𝑁𝜂 (𝑝)) . Thus, choosing
an appropriate 𝜂 > 0 such that 𝑓 ∗ (𝑞) = 𝑓 ∗ (𝑝) for all 𝑞 ∈ 𝑁𝜂 (𝑝), the sender can attain the indirect

utility function evaluated at the empirical distribution 𝑝 . 18 Additionally, [Bernstein et al., 2014]

show that the results hold without knowing if nature’s play is empirically restricted nor knowing

the restriction set 𝑄 .

A.8 Proof of Proposition 4.3
Fix 𝑄 ∈ M(𝐶𝜇) and let 𝜎 denote the signaling policy that results in 𝑄 . From Theorem (3.1), we

know the forecasting strategy 𝜎𝑡 (𝑓𝑡 = 𝑓 | 𝑝𝑡 = 𝑝) = 𝜋 (𝑓 | 𝑝)∀𝑡 ∈ N passes the calibration test and

results in the distribution of forecasts 𝐹𝜇,𝜎 = 𝑄 . In particular, we have

lim sup

𝑇→∞

∑𝑇
𝑡=1 1{ 𝑓𝑡=𝑓 ,𝜔𝑡=𝜔 }𝑢𝑅 (𝜔, 𝑎𝑡 )

𝑇
= 𝑓 (𝜔) lim sup

𝑇→∞

∑𝑇
𝑡=1 1{ 𝑓𝑡=𝑓 }𝑢𝑅 (𝜔, 𝑎𝑡 )

𝑇
(70)

This follows as if lim𝑛 𝑎𝑛 = 𝑎, then lim sup𝑛 𝑎𝑛𝑏𝑛 = 𝑎 lim sup𝑛 𝑏𝑛 . Given the receiver minimizes

regret, we have

18
Note, this is valid as long as 𝑓 ∗ (𝑝0 ) corresponds to a unique forecast. This condition is met generically.
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lim sup

𝑇→∞
max

𝑎∗∈𝐴

∑𝑇
𝑡=1 1{ 𝑓𝑡=𝑓 } [𝑢𝑅 (𝜔𝑡 , 𝑎

∗) − 𝑢𝑅 (𝜔𝑡 , 𝑎(𝑓 ))]
𝑇

≤ 0 (71)

⇒ lim sup

𝑇→∞
max

𝑎∗∈𝐴

∑𝑇
𝑡=1 1{ 𝑓𝑡=𝑓 }E𝑓 [𝑢𝑅 (𝜔, 𝑎∗) − 𝑢𝑅 (𝜔, 𝑎𝑡 )]

𝑇
≤ 0 (72)

If the receiver plays actions 𝑎𝑡 ∉ 𝑎(𝑓 ) on periods with non-negligible weight, it results in

a positive regret. Hence, if the receiver uses any no-regret learning algorithm, it will play the

recommended action 𝑎(𝑓 ) almost surely . Thus, for a stationary ergodic process, the sender can

ensure that she guarantee the payoff corresponding to for any distribution of forecasts𝑄 ∈ M(𝐶𝜇).
In particular, this implies she can guarantee the solution of the persuasion problem 𝑃𝑒𝑟 (𝐶𝜇, 𝑢𝑆 ).

B Extension: MDP
In this section, we consider an environment where the receiver’s action affects how the states

evolves. We consider the stochastic process 𝜇 is a Markov Decision Process with transition matrix

𝑇 (𝜔𝑡+1 | 𝜔𝑡 , 𝑎𝑡 ). The behavioral assumption of the receiver remains the same: he uses the calibration

test to verify the claims of the sender. He plays according to the sender’s forecast 𝑎𝑡 = 𝑎(𝑓𝑡 ) if she
passes the test and punishes her if she fails.

19
While characterizing the set of feasible policies that

pass the calibration test, it suffices to consider policies with memory 1, i.e., policies that maps the

past forecast and state into a possible random forecast 𝜎 : 𝐹 × Ω → Δ𝐹 . Any such policy induces a

Markov chain over the set 𝐹 × Ω, whose transition matrix 𝑓𝜎 is given by

𝑓𝜎 (𝑓 , 𝜔 | ˜𝑓 , �̃�) = 𝑇 (𝜔 | �̃�, ˜𝑓 ) 𝜎 (𝑓 | �̃�, ˜𝑓 ) (73)

Let us denote by F the set of feasible distributions 𝜇 ∈ Δ𝐹 , i.e., 𝜇 corresponds to the marginal

over 𝐹 of the invariant distribution of the Markov chain induced by a calibrated forecasting strategy

𝜎 : 𝐹 × Ω → Δ𝐹 .

Proposition B.1. The set of feasible distributions F is a convex polytope. It is the marginal of
𝜂 ∈ Δ(𝐹 × Ω × 𝐹 ) over 𝐹 where 𝜂 satisfies:∑︁

�̃�, ˜𝑓

𝜂 ( ˜𝑓 , �̃�, 𝑓 )𝑇 (𝜔 | �̃�, ˜𝑓 ) = 𝜂 (𝑓 , 𝜔) (74)

𝜂 (𝑓 , 𝜔) = 𝜂 (𝑓 ) 𝑓 (𝜔) (75)

Equation (74) states that 𝜂 is the invariant distribution for some forecasting strategy. Equation

(75) states that the invariant distribution 𝜂 is calibrated.

Proof. Given a forecasting strategy 𝜎 : 𝐹 × Ω → Δ𝐹 , we know the (time-averaged) distribution

of outcomes (forecasts and states) converges almost surely. For simplicity, we assume the MDP is

unichain. This implies that distribution of outcomes is the unique invariant distribution 𝜂 of the

Markov chain induced by 𝜎 . 20 As 𝜂 is the invariant distribution of the induced Markov chain, we

have

19
For simplicity, we assume the receiver plays according to the sender’s forecasts and only performs the calibration test at

the end of the game. This is because the punishment action also affects the state transition and can be difficult to keep track

of.

20
An MDP is unichain if every pure policy gives rise to a Markov chain with at most one recurrent class.
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𝜂 ( ˜𝑓 , �̃�) = lim

𝑇→∞

∑𝑇
𝑡=1 1{𝜔𝑡=�̃�,𝑓𝑡= ˜𝑓 }

𝑇
(76)

𝜂 (𝑓 , 𝜔) =
∑︁
�̃�, ˜𝑓

𝜂 ( ˜𝑓 , �̃�) 𝑓𝜎 (𝑓 , 𝜔 | ˜𝑓 , �̃�) (77)

Also, as we assume the forecasts are calibrated, we have

𝜂 (𝜔 | 𝑓 ) = lim

𝑇→∞

∑𝑇
𝑡=1 1{ 𝑓𝑡=𝑓 ,𝜔𝑡=𝜔 }∑𝑇

𝑡=1 1{ 𝑓𝑡=𝑓 }
= 𝑓 (𝜔) (78)

Equivalently, a distribution 𝜂 ∈ Δ(𝐹 × Ω × 𝐹 ) is feasible and invariant for some forecasting

strategy 𝜎 if ∑︁
𝑓
′′
𝜂 (𝑓 , 𝜔, 𝑓 ′′ ) =

∑︁
�̃�, ˜𝑓

𝜂 ( ˜𝑓 , �̃�, 𝑓 )𝑇 (𝜔 | �̃�, ˜𝑓 ) (79)

𝜂 (𝑓 , 𝜔) = 𝜂 (𝑓 ) 𝑓 (𝜔) (80)

where, the policy (with memory 1) to induce the distribution 𝜂 is given by

𝜎 (𝑓 | �̃�, ˜𝑓 ) =

𝜂 ( ˜𝑓 ,�̃�,𝑓 )
𝜂 ( ˜𝑓 ,�̃� )

if 𝜂 ( ˜𝑓 , �̃�) > 0

𝜂 (𝑓 ) if 𝜂 ( ˜𝑓 , �̃�) = 0

□

The sender’s maximization problem is given by the following linear program:

max

𝜇∈F

∑︁
𝑓

𝜇 (𝑓 )𝑢𝑆 (𝑓 ) (81)

Thus, we can extend our model to situations where the receiver’s action affects the distribution

of future states. Furthermore, we can characterize the set of outcomes that result from calibrated

strategies and solve for the optimal forecasting strategy.

C Persuasion problem: Blackwell experiments
In this section, we define an equivalent way of describing the persuasion problem in terms of

Blackwell experiments. This is the standard way of modeling the persuasion problem in the case of

a perfectly informed sender(see [Kamenica and Gentzkow, 2011]). We extend it to the case, where

the sender is imperfectly informed and can only use experiments less informative than a prior

experiment.

Definition C.1. An experiment 𝐹 : Ω → Δ𝑇 is a garbling of the experiment 𝐸 : Ω → Δ𝑆 if there

exists a row-stochastic matrix (or mapping) 𝐺 : 𝑆 → Δ𝑇 such that 𝐸𝐺 = 𝐹 .

This defines a partial ordering in the set of Blackwell experiments.We say 𝐹 ≾ 𝐸 when experiment

𝐹 is a garbling of experiment 𝐸. A prior belief 𝑝0 ∈ ΔΩ and an experiment 𝐸 : Ω → Δ𝑆 give rise

to a probability distribution P(𝑝0, 𝐸) := (𝜆𝑠 , 𝑝𝑠 )𝑠∈𝑆 . Conversely, given any probability distribution

𝑄 = (𝜇, 𝑞) you can define a prior belief (or mean) B(𝑄) and an experiment E(𝑄).
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𝜆𝑠 =
∑︁
𝜔∈Ω

𝑝0 (𝜔)𝐸 (𝑠 | 𝜔) B(𝑄) =
𝑛∑︁
𝑖=1

𝜇𝑖 𝑓𝑖

𝑝𝑠 (𝜔) =
𝑝0 (𝜔)𝐸 (𝑠 | 𝜔)∑

𝜔∈Ω 𝑝0 (𝜔)𝐸 (𝑠 | 𝜔)
E(𝑄) (𝑠𝑖 | 𝜔) =

𝜇𝑖 𝑓𝑖 (𝜔)∑𝑛
𝑖=1 𝜇𝑖 𝑓𝑖 (𝜔)

Lemma C.2 shows the equivalence between the simple mean-preserving contraction of a proba-

bility distribution ([Elton and Hill, 1998],[Whitmeyer and Whitmeyer, 2021]) and the garbling of

an experiment ([Blackwell, 1953]) with a fixed prior belief.

Lemma C.2. A probability distribution 𝑄 is a mean-preserving contraction of 𝑃 if and only if
B(𝑃) = B(𝑄) and the experiment E(𝑄) is a garbling of E(𝑃).

𝑃 (𝑝0, 𝐸)

𝑄 (𝑝0, 𝐸𝐺)

𝐺 𝐺 (82)

Proof. (⇒) Assume probability distribution 𝑄 is a mean-preserving contraction of 𝑃 . First, we

show that the mean of the two distributions is equal.

B(𝑄) =
𝑚∑︁
𝑗=1

𝜇 𝑗 𝑓𝑗 (83)

=

𝑚∑︁
𝑗=1

𝑛∑︁
𝑖=1

𝜆𝑖𝑝𝑖𝐺𝑖 𝑗 (84)

=

𝑛∑︁
𝑖=1

𝜆𝑖𝑝𝑖 = B(𝑃) (85)

Now, we show the resulting experiment 𝐹 is a garbling of 𝐸.

𝐹 (𝑡 𝑗 | 𝜔𝑛) =
𝜇 𝑗 𝑓𝑗 (𝜔𝑛)∑𝑚
𝑗=1 𝜇 𝑗 𝑓𝑗 (𝜔𝑛)

(86)

=

∑𝑛
𝑖=1 𝜆𝑖𝑝𝑖 (𝜔𝑛)𝐺𝑖 𝑗∑𝑛
𝑖=1 𝜆𝑖𝑝𝑖 (𝜔𝑛)

(87)

=

𝑛∑︁
𝑖=1

𝐸 (𝑠𝑖 | 𝜔𝑛)𝐺𝑖 𝑗 (88)

(⇐) Assume the Blackwell experiment 𝐹 is a garbling of 𝐸. We show that the resulting distribution

𝑄 is a simple mean-preserving contraction of 𝑃 .
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𝜇 𝑗 =

𝑠∑︁
𝑘=1

𝑝0 (𝜔𝑘 )𝐹 (𝑡 𝑗 | 𝜔𝑘 ) (89)

=

𝑠∑︁
𝑘=1

𝑝0 (𝜔𝑘 )
𝑛∑︁
𝑖=1

𝐸 (𝑠𝑖 | 𝜔𝑘 )𝐺𝑖 𝑗 (90)

=

𝑛∑︁
𝑖=1

𝜆𝑖𝐺𝑖 𝑗 (91)

𝜇 𝑗 𝑓𝑗 = 𝑝0 (𝜔𝑘 )𝐹 (𝑡 𝑗 | 𝜔𝑘 ) (92)

= 𝑝0 (𝜔𝑘 )
𝑛∑︁
𝑖=1

𝐸 (𝑠𝑖 | 𝜔𝑘 )𝐺𝑖 𝑗 (93)

=

𝑛∑︁
𝑖=1

𝜆𝑖𝑝𝑖𝐺𝑖 𝑗 (94)

□

Thus, solving the persuasion problem (𝑃,𝑢𝑆 ) is equivalent to finding the optimal garbling of the

experiment E(𝑃) with prior B(𝑃).

max

𝐹≾E(𝑃 )
E𝑄 [𝑢] where 𝑄 = P(B(𝑃), 𝐹 ) (95)

For a perfectly informed sender, E(P) corresponds to the fully informative experiment and B(𝑃)
is simply the common prior belief of the players. Any distribution 𝑄 such that B(𝑃) = ∑

𝑗 𝜇 𝑗 𝑓𝑗
(Bayes plausibility condition) can be implemented.

Note that the optimization problem (95) is in terms of mean-preserving spreads (splittings) while

the equivalent problem (8) is in terms of mean-preserving contractions (garblings). Thus, we provide

an alternate formulation of the persuasion problem in terms of garblings of an experiment. This

formulation offers useful insights when the sender is not perfectly informed.
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