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Abstract

We study games with incomplete information and characterize when a feasible out-
come is Pareto efficient. We show that any outcome with excessive randomization over
actions is inefficient. Generically, efficiency requires that the total number of actions
taken across states be strictly less than the sum of the number of players and states.
We then examine the efficiency of equilibrium outcomes in communication models.
Generically, a cheap talk outcome is efficient only if it is pure. When the sender’s
payoff is state-independent, it is efficient if and only if the sender’s most preferred
action is chosen with certainty. In natural buyer–seller settings, Bayesian persuasion
outcomes are inefficient across a wide range of priors and preferences. Finally, we show
that our results apply to mechanism design problems with many players.

1 Introduction
An outcome is Pareto efficient if there is no other feasible outcome that makes at least one
player strictly better off without making any other player worse off. Efficiency is a natural and
desirable property in strategic situations. However, when players have conflicting interests,
efficiency is far from guaranteed. One natural mechanism for overcoming inefficiency is
communication. Can strategic communication lead to Pareto efficiency?

Communication plays a central role in many economic settings, yet it remains unclear
when it leads to efficient outcomes. Existing models of strategic communication, such as
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cheap talk and Bayesian persuasion, mainly characterize equilibrium outcomes rather than
examine whether they are Pareto efficient. We identify simple conditions for efficiency based
on the number of actions taken across states and show that excessive randomization leads
to inefficiency.

We examine games with incomplete information, where the state of the world is drawn
from a common prior and players’ payoffs depend on both the state and the chosen actions.
We then focus on two-player sender–receiver games, where the sender observes the state and
sends a message, while the receiver chooses an action after observing it. More information
helps the receiver make better choices, but the sender may strategically conceal or distort in-
formation to influence the outcome. This tension lies at the heart of whether communication
can lead to efficiency.

In particular, we focus on two models of strategic information transmission: cheap talk
(Crawford and Sobel, 1982) and Bayesian persuasion (Kamenica and Gentzkow, 2011). In
both, the sender communicates strategically to influence the receiver’s action. The key
distinction between the two models is that in Bayesian persuasion, the sender can commit
to his signaling policy, while in cheap talk, he cannot. Our aim is to determine the efficiency
of the equilibrium outcomes in both models.

1.1 Overview of Results
First, we establish a connection between ex-ante and ex-post efficiency using convex ge-
ometry. An outcome specifies a probability distribution over actions for each state. We
show that an outcome is ex-ante efficient if and only if the state-contingent outcomes are
ex-post efficient for all states and compatible (Proposition 1). An outcome is compatible if
it maximizes a common positive linear functional over the feasible payoff sets of all states.
The key argument is that the feasible set under the prior equals the Minkowski sum of the
feasible sets across all states, and that maximizers of a linear functional are preserved under
Minkowski addition.

Using this connection, we provide a necessary and sufficient condition for an outcome
to be ex-ante efficient (Proposition 2). The condition depends solely on the players’ payoff
functions and can be verified by examining state-wise deviations from the recommended
actions. An outcome is efficient if and only if there is no convex combination of feasible
deviations, taken across all states, that makes every player weakly better off and at least one
player strictly better off. In other words, no Pareto improvement across states is possible.

In Theorem 1, we provide a necessary condition for efficiency based on the number of
actions taken across states. Generically, an outcome is efficient only if the total number
of actions played across all states is strictly less than the sum of the number of players
and the number of states. Any excessive randomization across actions necessarily leads to
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inefficiency, as it either violates compatibility or ex-post efficiency.
For intuition, consider the two-player sender-receiver model. We classify outcomes into

three categories: pure, quasi-pure, and mixed. An outcome is pure if a deterministic action
is taken in every state. It is quasi-pure if a deterministic action is taken in all but one state,
where a binary action is taken. And, an outcome is mixed if it is neither pure nor quasi-pure.
The bound for two players tells us that an outcome is efficient only if it is pure or quasi-pure.
A mixed outcome fails to be efficient because it is either incompatible or ex-post inefficient in
some state. First, consider the case where two or more actions are taken in multiple states.
In any such state, the state-contingent outcome can be ex-post efficient only if it maximizes
a unique linear functional determined by the actions taken. However, compatibility requires
that the state-contingent mixed outcomes across all these states maximize the same linear
functional. Each state determines its own unique functional, and any generic perturbation
of the payoff matrix violates this requirement. Second, if more than two actions occur
in a state, the outcome lies on the Pareto frontier of that state’s feasible payoff set only
if the corresponding payoff vectors are collinear. Again, this condition is not robust to
perturbations, and therefore the outcome is ex-post inefficient. Using this result, we provide
conditions under which the equilibrium outcomes in cheap talk and Bayesian persuasion are
inefficient.

First, we consider the cheap talk model, where the sender cannot commit to a signaling
policy. This lack of commitment imposes strict incentive constraints on the sender. We
show that, generically, an equilibrium is efficient only if it is pure (Proposition 3). Any
stochastic outcome requires the sender to be indifferent between multiple actions in a given
state. However, generically, the receiver will strictly prefer one of these actions, leading to
inefficiency. Next, when the sender’s payoff is state-independent, we show that an equilib-
rium is efficient if and only if the sender’s most preferred action is chosen with certainty
(Proposition 4). In this case, any non-trivial equilibrium induces a posterior belief with
positive weight on a state where both the sender and receiver prefer the sender’s preferred
action over the equilibrium outcome. Crucially, this action is taken with certainty only
in a babbling equilibrium, implying that any equilibrium where communication affects the
receiver’s action is inefficient.

Second, we study Bayesian persuasion in a natural class of buyer–seller interactions. The
seller provides information to a buyer who decides whether, and if so which, product to
purchase. The buyer wants to choose the best available product, if any is worth buying,
while the seller cares only about selling products with a high profit. To maximize his payoff,
the seller tries to persuade the buyer to purchase a product even when none is valuable to the
buyer. However, because his recommendations must satisfy the buyer’s obedience condition,
the seller may need to randomize his recommendations when no product is worth buying.
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Using this intuition, we show that for a wide range of priors and preferences (Proposition 5
and 6), the Bayesian persuasion outcome is necessarily mixed and, hence, inefficient.

Finally, our insights also apply beyond two-player games. In particular, we visit the
ranking-based peer selection mechanisms introduced in Niemeyer and Preusser (2024). In
this environment, extremal mechanisms are inherently stochastic, making randomization
unavoidable. Under mild assumptions, our bound on the number of actions is violated,
implying that the resulting outcome is generically inefficient (Proposition 7).

1.2 Related Literature
Our work contributes to the literature on communication between an informed sender and
an uninformed receiver. In cheap talk (Crawford and Sobel, 1982), the sender’s message
is unverifiable, while in Bayesian persuasion (Kamenica and Gentzkow, 2011), the sender
commits to how the message is generated.1 Ichihashi (2019) analyzes how restrictions on
the sender’s information in Bayesian persuasion affect the players’ welfare. His analysis,
which is limited to binary actions, shows that the Bayesian persuasion outcome is always
efficient. However, our findings reveal that efficiency cannot be guaranteed when there are
more than two actions. Relatedly, Rayo and Segal (2010) analyze the problem of finding
disclosure rules that maximize a weighted sum of sender profits and receiver surplus. Cheng
et al. (2024) show that for the sender to benefit from ambiguity in persuasion, at least two
induced outcomes must be Pareto ranked, that is, both players agree on their payoff ranking.
Doval and Smolin (2024) analyze a welfare function over a heterogeneous population and
characterize the set of feasible welfare outcomes achievable through information policies.
They characterize the Pareto frontier of this set using Bayesian persuasion problems.

Given its importance, several papers have focused on identifying the conditions that lead
to Pareto efficient outcomes. These include works that explore the conditions under which
Nash equilibria can be efficient or inefficient, such as Case (1974), Dubey (1986) and Cohen
(1998). Another line of research looks at efficiency from a learning perspective, developing
adaptive procedures that lead to efficient outcomes, such as Arieli and Babichenko (2012),
Pradelski and Young (2012), Marden et al. (2014), and Jindani (2022). Arieli et al. (2017)
study commitment procedures that result in efficiency in extensive form games. In a closely
related paper, Rudov et al. (2025) analyze when a Nash equilibrium can be improved by a
correlated equilibrium, exploiting the convex polytope structure of correlated equilibria. Like
us, they derive geometric conditions that restrict the extent of randomization. However, they
focus on improvability (or efficiency) within the set of equilibria, whereas we study efficiency

1There has been some work on selecting equilibria in cheap talk games that are Pareto dominant (see
Crawford and Sobel, 1982, Antić and Persico, 2023). Our focus differs as we examine efficiency relative to
all feasible payoffs, not just the set of equilibrium payoffs.
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relative to the set of all outcomes. Closer to our setting with incomplete information, they
show that a Bayesian Nash equilibrium is generically an extreme point of the set of Bayes
correlated equilibria if and only if it is pure. In our setting, however, even a pure Bayesian
Nash equilibrium may fail to be efficient.

2 Model and Preliminaries
We consider a game with incomplete information with k ≥ 2 players. The state of the
world is drawn from a finite set Ω according to a common prior p ∈ int(∆Ω). Each player
i ∈ {1, . . . , k} has a finite set of actions Ai, and we write A =

∏k
i=1 Ai for the set of pure

action profiles. Each player i has private information represented by a type ti ∈ Ti, where Ti

is finite. Let T = T1 × · · · ×Tk denote the set of type profiles with distribution π : Ω → ∆T .
Each player has a payoff function ui : Ω × A → R, and we assume the collection of payoffs
(u1, . . . , uk) is generic, meaning that the properties we establish hold for all bounded payoffs
except on a subset of Lebesgue measure zero.

An outcome is a mapping µ : Ω → ∆A, which assigns to each state ω ∈ Ω a probability
distribution µ(· | ω) over action profiles. Equivalently, one can think of a mediator who
observes the realized state and recommends an action profile (possibly at random) to the
players, which they follow. Crucially, the recommendation need not be incentive compatible;
we evaluate efficiency relative to the set of all feasible outcomes.

The payoff vector induced by outcome µ under prior p is

u(µ) =
∑
ω∈Ω

p(ω)
∑
a∈A

µ(a | ω)
(
u1(ω, a), . . . , uk(ω, a)

)
. (1)

The set of feasible payoff vectors given prior p is defined as

Fp = {u ∈ Rk : u = u(µ), for some outcome µ : Ω → ∆A }. (2)

This set is a convex polytope. Its extreme points correspond to a mediator providing deter-
ministic recommendations: in each state, the mediator recommends a pure action to every
player.

Definition 1. Given a compact convex set of feasible payoffs F ⊆ Rk, a vector u ∈ F is
efficient if there does not exist another feasible payoff vector v ∈ F such that v ≥ u, with a
strict inequality for at least one component.

In our setting, a feasible payoff vector is efficient if and only if it maximizes a positive
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weighted sum of the players’ payoffs.2 For a convex polytope F ⊆ Rk and for any vector
n ∈ Rk, denote by

S(F ;n) := {x ∈ F | nTx = max
y∈F

nTy} (3)

the set of maximizers x of the inner product nTx over F .
In our setup, we can identify the set of feasible payoffs with the set of outcomes. Thus,

we can analyze efficiency in terms of outcomes instead of payoff vectors.

Definition 2. An outcome µ : Ω → ∆A is efficient if u(µ) is efficient with respect to Fp.

Given an outcome µ, we refer to µ(ω) ∈ ∆A and u(µ | ω) ∈ Rk as the outcome and
payoff vector in state ω, respectively. Let

Fω = Co
(
(u1(ω, a), . . . , uk(ω, a)) : a ∈ A

)
. (4)

denote the feasible payoff vectors in state ω.3 Any outcome can be decomposed in terms
of its state-contingent outcomes. This follows as the set of the feasible payoff vectors given
a prior can be written as a unique Minkowski sum of the set of the feasible payoff vectors
for each state:4

Fp =
∑
ω∈Ω

p(ω)Fω. (5)

Our notion of efficiency is defined before uncertainty is resolved, that is, before the state
is realized (ex-ante). However, efficiency can also be evaluated after uncertainty is resolved,
once the state is realized (ex-post). An outcome µ is ex-post efficient in state ω if its induced
outcome µ(ω) is efficient with respect to the set of feasible payoff vectors in that state.

Definition 3. An outcome µ : Ω → ∆A is ex-post efficient in state ω if u(µ | ω) is
efficient with respect to Fω.

Efficiency implies ex-post efficiency but not the other way around. For the two notions
to coincide, the state-contingent outcomes must satisfy an additional condition, which we
call compatibility.

Definition 4. An outcome µ : Ω → ∆A is compatible if there exists a strictly positive
n ∈ Rk

++, such that u(µ | ω) ∈ S(Fω;n) for all ω ∈ Ω.
2This equivalence fails for general set of feasible payoff vectors but can be approximated by “near”

weighted sum of the players’ payoffs, as shown in Che et al. (2024). In our case, the equivalence holds
because the set of feasible payoffs is a convex polytope.

3where Co(A) stands for convex hull of set A.
4The Minkowski sum of two sets A and B is given by A+B = {a+ b | a ∈ A, b ∈ B}.
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Compatibility ensures the existence of a common positive vector n that is maximized
across all state-contingent feasible payoffs Fω by the outcome µ.

Proposition 1. An outcome µ : Ω → ∆A is efficient if and only if it is ex-post efficient in
all states and compatible.

Proof. The characterization relies on the following relation for the Minkowski sum of convex
compact sets (see Fukuda, 2004):

S(F1 + ...+ Fk;n) = S(F1;n) + ...+ S(Fk;n) for any n ∈ Rk (6)

where, Fi is a compact convex set for all i = 1, ..., k and F1 + F2 denotes the Minkowski
sum of the sets F1 and F2.

Each point in the Pareto frontier of the set Fp maximizes some positive linear functional
nTx over Fp. Given Fp =

∑
ω p(ω)Fω, and using Equation (6), the payoff vector u(µ) lies

on the Pareto frontier of Fp if and only if, for all ω ∈ Ω, the payoff vector u(µ | ω) lies on
the Pareto frontier of Fω and there exists a common positive vector n that is maximized.
Ex-post efficiency ensures that the outcome maximizes a positive linear functional over the
feasible payoff set for each state, while compatibility ensures that the same linear functional
can be used across all states.

We illustrate the notions of ex-ante and ex-post efficiency using the following two player
example.

Example 1. Consider a game with two players: the sender and the receiver. Consider the
state space Ω = {ω0, ω1} and the receiver’s action space A = {a0, a1, a2, a3, a4}. The sender’s
and receiver’s payoffs are given by the following matrix:

a0 a1 a2 a3 a4
ω0 (2, 9) (10, 8) (0, 6.4) (3, 4) (1, 0)

ω1 (2, 0) (10, 4) (0, 6.4) (3, 8) (1, 9)

We analyze the efficiency of three pairs of outcomes and priors p = P(ω1):

(a) p = 0.10: an outcome where actions a0 and a1 are taken in ω0 and action a1 is taken
in ω1;

(b) p = 0.30: an outcome where action a1 is taken with certainty in both states;

(c) p = 0.70: an outcome where action a1 is taken in ω0, and actions a1 and a4 are taken
in ω1.
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As we will later see, these outcomes correspond to the Bayesian persuasion outcomes for the
respective priors.

The feasible payoff vectors for states ω0, ω1, and the prior p are represented by the red,
blue and orange regions in Figure 1, respectively. We find that for (a) the outcome is ex-post
efficient in both states but not compatible, for (b) the outcome is ex-post efficient in both states
and compatible and for (c) the outcome is not ex-post efficient in state ω1. The outcome
in (a) is not compatible because the unique normal nω0 does not belong to the normal cone
spanned by nω1 and nω1

, i.e., nω0 /∈ cone{nω1 , nω1
}. The outcome is Pareto efficient in (b),

but not in (a) and (c) (see the respective polytopes Fp in Figure 1). Thus, this exemplifies
that an outcome is efficient if and only if it is ex-post efficient in all states and compatible.

Next, we provide a necessary and sufficient condition for an outcome to be efficient. This
condition is determined solely by the payoff functions of the players. To check for efficiency,
one must look at the possible change in pair of payoffs when deviating from the recommended
action for all possible states. Define

dµ(ω, a) :=
(
u1(ω, a)− u1(ω, µ(ω)), · · · , uk(ω, a)− uk(ω, µ(ω))

)
(7)

as the deviation in state ω when action profile a is taken instead of the recommended
profile µ(ω) ∈ ∆A. Let

Dµ = {d̃ ∈ Rk : d̃ = dµ(ω, a) for some ω ∈ Ω, a ∈ A} (8)

denote the set of all deviations given outcome µ. And, let

cone(Dµ) :=
{ ∑

d∈Dµ

λd d : λd ≥ 0 for all d ∈ Dµ

}
. (9)

denote the cone generated by the set of deviations Dµ. An outcome is efficient if and
only if no convex combination of deviations across states leads to a Pareto improvement.

Proposition 2. An outcome µ : Ω → ∆A is efficient if and only if

cone(Dµ) ∩ Rk
+ = {0}. (10)

Proof. (⇒) We prove by contradiction. If µ is efficient, then there exists n ∈ Rk
++ such that

n · d ≤ 0 for all d ∈ Dµ. Suppose instead that (10) does not hold. Then there exist non-
negative coefficients (λd)d∈Dµ with dλ =

∑
d∈Dµ

λdd ∈ Rk
+ \ {0}. In particular, as n ∈ Rk

++,
this implies that n · dλ > 0. But n · dλ =

∑
d∈Dµ

λd(n · d), so there exists some d ∈ Dµ with
λd > 0 for which n · d > 0, leading to a contradiction.
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Figure 1: Outcomes (black node with circle) for respective priors: (a) p = 0.10, (b) p = 0.30
and (c) p = 0.70. The red region represents Fω0 , the blue region represents Fω1 , and the
orange region represents Fp.
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(⇐) Assume (10) holds, i.e., no strictly positive vector lies in the cone generated by
the deviations. Let A denote the k × |Dµ| matrix whose columns are the deviation vectors
dµ(ω, a). By Mangasarian’s Theorem (as stated in Perng, 2017), for any real matrix A

exactly one of the following holds:

(i) There exists x ≥ 0, x ̸= 0 such that Ax ≥ 0 (with at least one strictly positive
component).

(ii) There exists n > 0 (strictly positive component wise) such that n⊤A ≤ 0.

Since case (i) is ruled out by (10), case (ii) must hold. Thus, there exists n ∈ Rk
++ such that

n · d ≤ 0 for all d ∈ Dµ.
Fix any state ω and action a ∈ A. Then n · dµ(ω, a) = n · (u(ω, a) − u(µ | ω)) ≤ 0.

This implies u(µ | ω) ∈ S(Fω;n). Hence µ is ex-post efficient in every state, and the same n

supports all states, establishing compatibility. Thus, the outcome µ is efficient.

Remark 1. When k = 2, the condition reduces to: there is no deviation with dµ(ω, a) ≥ 0
(strict in at least one component), and for any pair of deviations (d, d̃) where d benefits player
1 and d̃ benefits player 2, the internal angle between d and d̃ is at most 180◦. Equivalently,
d̃ · d† ≥ 0, where d† denotes the vector obtained by rotating d clockwise by 90◦. In particular,
if d = (x,−y) with x, y ≥ 0, then d† = (−y,−x).

The efficiency condition depends solely on the support of the outcome and is independent
of the weight of randomization and the prior. This has two implications. First, if an outcome
is efficient (or inefficient) for a prior p ∈ int(∆Ω), it remains so for all interior priors. Second,
the support of the Bayesian persuasion outcome (for each state) remains fixed within a convex
region, with only the weight of randomization varying. Thus, if an equilibrium outcome is
efficient (or inefficient) for a given prior, it holds across all priors in that convex region.

We describe outcomes by the number of actions taken in each state. This will play a
fundamental role in our main result. Given an outcome µ and a state ω let |µ(ω)| denote the
size of the support of µ(ω) ⊂ A, namely the number of actions that are taken with positive
probability given state ω. Our main result provides a necessary condition for efficiency. In
words, efficiency requires that the overall number of actions taken across states be strictly
less than the sum of the number of players and states; excessive randomization necessarily
leads to inefficiency. Intuitively, efficiency requires that all state-contingent outcomes share a
common strictly positive outer normal. When too many actions are played across all states,
such a normal cannot exist.
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Theorem 1. Generically, an outcome µ : Ω → ∆A is efficient only if∑
ω∈Ω

|µ(ω)| < k + |Ω|. (11)

Proof. Recall that the set of feasible payoffs in state ω and given prior p equals

Fω = Co
(
u(ω, a) : a ∈ A

)
⊂ Rk, (12)

Fp = Co
(
u(µ) : µ : Ω → A

)
⊂ Rk, (13)

where u(ω, a) =
(
u1(ω, a), . . . , uk(ω, a)

)
and u(µ) =

∑
ω,a p(ω)µ(a | ω)u(ω, a).

Given any state ω, suppose the outcome mixes |µ(ω)| pure action profiles a1, . . . , a|µ(ω)|.
An outcome µ is efficient if and only if it is ex-post efficient in every state and compatible.
This follows from the fact that Fp =

∑
ω p(ω)Fω.

For the outcome µ to be ex-post efficient in state ω, the induced payoff vector u(µ | ω)
must maximize some strictly positive linear functional n ∈ Rk

++ over Fω. Equivalently, it
must lie on a face of Fω supported by some outer normal n ∈ Rk

++. This requires the
existence of some n ∈ Rk

++ such that

n ·
(
u(ω, ai)− u(ω, a1)

)
= 0 for i = 2, . . . , |µ(ω)|, (14)

generically resulting in |µ(ω)|−1 independent linear equations. Hence, the face has dimension
|µ(ω)| − 1, and its outer normal cone has dimension k− (|µ(ω)| − 1). Denote this outer cone
by Nω(µ).

For the outcome µ to be compatible, there must exist a single nonzero positive normal
that belongs to the respective normal cones of all states:⋂

ω∈Ω

Nω(µ) ̸= ∅. (15)

Each state with |µ(ω)| mixed actions adds |µ(ω)| − 1 independent constraints that the
normal must satisfy. Generically, the dimension of the intersection of the outer normals is

dim
( ⋂

ω∈Ω

Nω(µ)
)
= k −

∑
ω∈Ω

(|µ(ω)| − 1) = k + |Ω| −
∑
ω∈Ω

|µ(ω)|. (16)

If
∑

ω |µ(ω)| ≥ k + |Ω|, the intersection is empty, implying that no common positive
normal exists. Thus, the outcome is incompatible and inefficient.
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Remark 2. The aggregate bound implies a state-wise bound: |µ(ω)| ≤ k for all ω ∈ Ω.
Generically, an outcome is ex-post efficient in a state only if the number of action profiles
taken in that state is weakly less than the number of players.

Remark 3. For the two-player sender-receiver model, outcomes can be categorized as pure
(a deterministic action is taken in every state), quasi-pure (a deterministic action is taken
in every state except one, where two actions are taken with positive probability), or mixed.
The bound

∑
ω |µ(ω)| < 2 + |Ω| implies that, generically, an outcome is efficient only if it is

pure or quasi-pure.

Remark 4. The same condition also characterizes when an outcome generically lies on any
face of the polytope Fp, not only on the Pareto frontier. This is because the argument relies
only on properties of the Minkowski sum of polytopes and their faces. Pareto efficiency only
requires that the outer normal is strictly positive.

The necessary condition in Theorem 1 is far from sufficient. For instance, in Example 1,
the outcome is quasi-pure (satisfying the bound) in cases (a) and (c), yet it remains inefficient.
Even if all state-contingent outcomes are pure and ex-post efficient, the overall outcome can
still be inefficient. Efficiency is guaranteed when a player’s most preferred outcome—one
that is ex-post efficient in every state—is induced. In the example, this occurs when the
signaling policy is fully revealing and the receiver takes his optimal action in each state, or
when the sender’s preferred action is chosen in every state, as in case (b) of Example 1.

Type-contingent decision rules: Following Bergemann and Morris (2019), outcomes
can be viewed as the result of type-contingent decision rules σ : T × Ω → ∆A, where
actions depend on both the type profile and the state. Since payoffs depend only on states
and actions, the type profile and its distribution does not change the set of feasible payoff
vectors. Type profiles become relevant only when incentive compatibility constraints are
imposed.

A Bayes correlated equilibrium (BCE) consists of such type-contingent decision
rules that satisfy obedience constraints. A Bayesian Nash equilibrium (BNE) is the
subset of BCE in which each player randomizes over actions as a function of their type
(σi : Ti → ∆Ai). If the distribution of type profiles π : Ω → ∆T has full support (assigns
positive probability to every type at every state), then even pure decision rules may assign
mixed actions across states.5

Corollary 1. Assume π : Ω → ∆T has full support. If either
5In a generic game, both the prior p and the type distribution π have full support.
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(i) σ : T × Ω → A and there are at least k states with types t, t′ ∈ T such that σ(t, ω) ̸=
σ(t′, ω), or

(ii) σi : Ti → Ai for all i = 1, . . . , k and at least q players use two or more actions across
their types where |Ω| (2q − 1) ≥ k,

then the induced outcome µ is generically inefficient.

The corollary shows that BCE or BNE outcomes may even fail to be efficient when players
follow pure decision rules. Differences in types impose distinct incentive constraints, which
can generate excessive randomization and lead to inefficiency. Rudov et al. (2025) show that
within the set of BCEs, a BNE is extreme if and only if it is pure.6 In contrast, we show
that efficiency may fail even for such pure rules when outcomes are evaluated relative to all
feasible payoffs rather than only the set of equilibria payoffs.

3 Applications

3.1 Sender-Receiver Model
We now specialize the general framework to the two-player sender-receiver model. The
environment consists of a finite state space Ω, a finite action space A, and a common prior
p ∈ int(∆Ω). There are two players: the sender (S), who observes the realized state, and the
receiver (R), who chooses an action after receiving a message. Payoffs are given by bounded
functions ui : Ω× A → R, for i ∈ {S,R}.

The receiver needs to take an action a ∈ A where the unknown state ω ∈ Ω is distributed
according to prior p ∈ ∆Ω. The sender provides information about the state by sending a
message according to a signaling policy σ : Ω → ∆M , where M is a finite set of messages. We
assume there are at least as many messages as actions or states, i.e., |M | ≥ max{|A|, |Ω|}.
The receiver on seeing message m ∈ M drawn according to policy σ forms a posterior belief
via Bayes’ rule before taking an action. The receiver’s strategy is denoted by τ : M → ∆A.
The sender-receiver setup includes the model of cheap talk and Bayesian persuasion, with
the difference that in Bayesian persuasion the sender can commit to the signaling policy,
while in cheap talk he cannot.

A strategy profile (σ, τ) induces an outcome µ : Ω → ∆A, specifying a probability
distribution over actions for each state, where

µ(a | ω) =
∑
m∈M

σ(m | ω)τ(a | m) for all ω ∈ Ω, a ∈ A.

6For the case of complete-information games, they show that a Nash equilibrium is extreme in the set of
correlated equilibria if and only if at most two players randomize.
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A signaling policy is direct if the messages represent action recommendations (M ≡ A). Any
feasible outcome can be achieved through some direct policy and an obedient receiver. To
induce outcome µ, the sender recommends action a in state ω with probability µ(a | ω),
and the receiver follows the recommendation. Hence, as in our general framework, we can
equivalently study outcomes µ : Ω → ∆A without loss of generality.

The sender-receiver setup encompasses two canonical models of communication: cheap
talk (Crawford and Sobel, 1982), where the sender cannot commit to a signaling policy, and
Bayesian persuasion (Kamenica and Gentzkow, 2011), where the sender can commit ex ante.

3.1.1 Cheap talk

Cheap talk considers communication between an informed sender and uninformed receiver.
The sender knows the state of the world and sends a message to persuade the receiver. In
contrast to Bayesian persuasion, the model assumes that the sender cannot commit to how
messages are generated. This imposes strict incentive constraints on the sender, ensuring
that if he sends multiple messages with positive probability in a given state, he must be
indifferent among them. The receiver’s equilibrium condition is to choose the best response
to the message given his posterior belief.

Definition 5 (Cheap talk outcome). A strategy profile (σ, τ) is a Perfect Bayesian Equilib-
rium (PBE) of cheap talk if it satisfies the following conditions:

1. (Sender) For every ω ∈ Ω and for every m ∈ supp(σ(ω)),

uS(ω, τ(m)) = max
m′∈M

uS(ω, τ(m
′
)). (17)

2. (Receiver) For each message m ∈ M , there exists a posterior belief qm ∈ ∆Ω such that,
for every a ∈ supp(τ(m)),

a ∈ arg max
a′∈A

Eqm [uR(ω, a
′
)], (18)

and for any m ∈
⋃

ω∈Ω supp(σ(ω)), the posterior belief qm is derived using Bayes’ rule:

qm(ω) =
p(ω)σ(m | ω)∑
ω′ p(ω′)σ(m | ω′)

. (19)

Unlike Bayesian persuasion, cheap talk exhibits a multiplicity of equilibria. In particular,
a babbling equilibrium always exists, in which no communication takes place and the receiver
plays his best response to the prior. Note that in the case of cheap talk, we cannot restrict
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attention to direct signaling policies, as some equilibria may require randomizing between
actions for a given message.

First, we show that, generically, a cheap talk outcome can be efficient only if it is pure.
This is a stronger result than the one stated in Theorem 1, as any stochastic outcome,
including quasi-pure, is inefficient.

Proposition 3. Generically, a cheap talk outcome µ : Ω → ∆A is efficient only if it is pure.

Proof. We prove by contradiction. Suppose there exists an efficient cheap talk outcome that
is not pure.

First, consider the case where the signaling policy is necessarily stochastic. So, there
exists ω∗ ∈ Ω and messages m1,m2 ∈ M such that σ(m1 | ω∗) · σ(m2 | ω∗) > 0. Note that
τ(m1) ̸= τ(m2), since otherwise the same outcome could be induced using a single message.
By Theorem 1, if more than two actions are played in a given state then the outcome is
inefficient for a generic set of payoffs. Therefore, assume exactly two actions, a1 and a2, are
played with positive probability. The sender’s equilibrium condition implies that

uS(ω
∗, a1) = uS(ω

∗, a2). (20)

For the outcome to be ω∗-efficient, the receiver must also be indifferent:

uR(ω
∗, a1) = uR(ω

∗, a2). (21)

If this indifference did not hold, then deviating to a pure action would strictly improve
the receiver’s payoff in the state ω∗. Consider any perturbation of payoffs that preserves
the sender’s indifference, so the outcome remains an equilibrium. For any such generic
perturbation, the receiver’s indifference conditions hold only on a subset of payoff vectors
with Lebesgue measure zero, and thus represent a non-generic condition. For example, if
A = {a1, a2}, both indifference conditions imply that the state ω∗ is payoff-irrelevant.

Second, consider the case where the signaling policy is pure. As the outcome is stochastic,
this implies that the receiver’s response to some message m is mixed. This implies that the
receiver has multiple best responses at the posterior belief qm. Again, to ensure efficiency,
assume exactly two actions a1 and a2 are played with positive probability and the sender is
indifferent between them. Otherwise, deviating to a pure action would strictly improve the
sender’s payoff without reducing the receiver’s. This implies that

Eqm [uS(ω, a1)] = Eqm [uS(ω, a2)], Eqm [uR(ω, a1)] = Eqm [uR(ω, a2)]. (22)

As before, this corresponds to a non-generic condition. So, the cheap talk outcome is
inefficient with respect to the prior qm under all generic perturbations. This implies that
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there exists a deviation dµ(ω, a) in some state ω ∈ supp(qm) and action a that violates
the efficiency condition of Proposition 2. First, since supp(qm) ⊆ supp(p), this deviation
is also feasible under the prior p. Second, condition (ii) in Proposition 2 imposes stronger
restrictions under prior p as the set of possible deviations is larger. Hence, generically, the
outcome is inefficient with respect to Fp.

Intuitively, any stochastic cheap talk outcome relies on knife-edge indifferences for the
players. These break under generic payoffs, so only pure outcomes can be efficient. Ka-
menica and Lin (2025) show that, generically, if the sender’s preferred cheap talk outcome
is necessarily stochastic, then he values commitment. Hence, the cheap talk outcome must
be pure not only for efficiency but also for commitment to have no value.

Next, we consider the case where the sender’s payoff is state-independent. Lipnowski and
Ravid (2020) characterize the sender’s preferred equilibrium using a belief-based approach.
Define the receiver’s best responses given his belief p ∈ ∆Ω as A∗(p) := arg maxa∈A Ep[uR(ω, a)].
The sender’s value function

V (p) := max
a∈A∗(p)

Ep[uS(ω, a)], (23)

represents the sender’s expected payoff when the receiver, with belief p, selects the
sender’s preferred best response. They show that the sender’s preferred equilibrium cor-
responds to the quasiconcave envelope of the value function, evaluated at the prior, which
we denote by Quasicav V . We graphically illustrate this equilibrium for Example 1 in Fig-
ure 2.
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Figure 2: Cheap talk: The value function (blue solid) and its quasiconcave envelope (red
dotted). Vertical lines show the jumps at cutoff beliefs.
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Let A∗ :=
⋃

p∈∆Ω A∗(p) denote the set of actions that are a best response for the receiver
under some belief, and let a∗ := arg maxa∈A∗ uS(a) denote the sender’s most preferred action
in A∗. To avoid non-generic cases, we assume that the sender’s payoffs are distinct across
actions, i.e., uS(a) ̸= uS(b) whenever a ̸= b.

Proposition 4. For a sender with state-independent payoff, a cheap talk outcome is efficient
if and only if the sender’s preferred action a∗ is induced with certainty.

Proof. (⇒) Following Sobel (2013), we say an equilibrium is influential if the receiver does
not always take the same action. First, we show that any influential equilibrium is ineffi-
cient. Then, we show that any non-influential equilibrium that does not induce the sender’s
preferred action with certainty is inefficient.

Assume that the equilibrium is influential, that is, τ(m) ∈ ∆A is not constant on the
equilibrium path. For this to happen, at least two messages are sent with positive probability,
resulting in different actions. First, observe that at least one message must induce a non-
degenerate posterior belief q ∈ ∆Ω.7 This is due to the sender’s equilibrium condition as he
must be indifferent between sending messages that result in the same expected payoff. And as
we assume the sender’s payoff is state-independent and each action leads to a different payoff,
some randomization is necessary for the indifference condition to hold. Such a randomization
can only occur at a non-degenerate belief where the receiver has multiple best response
actions, that is, |A∗(q)| > 1.8 So, there must be at least two distinct actions a1 and a2 that are
played with positive probability when the posterior belief q is induced. For example, consider
the influential equilibrium for prior p = 0.5 in Figure 2, where the posterior beliefs q = 0.4

and q = 0.6 are induced. Given the non-degenerate posterior belief q = 0.4, the sender must
randomize between a1 and a2 to satisfy the sender’s indifference condition. However, the
sender strictly prefers one action over the other, for instance, assume uS(a1) > uS(a2). This
implies that the sender’s preferred action a1 is induced with less than probability one at
belief q = 0.4. Since both actions are receiver’s best responses under some non-degenerate
belief, there exists a hyperplane passing through the belief q that separates the simplex into
two convex regions—one where the receiver prefers a1 and one where he prefers a2. In our
example, for the pair of actions a1 and a2, these convex regions are given by the intervals
[0, 0.4] and [0.4, 1] respectively. Using this partition, one can always identify a state where
the receiver also prefers the sender’s preferred action. Formally, given actions a1, a2 ∈ A∗(q),
there exists a state ω∗ such that q(ω∗) > 0 and uR(ω

∗, a1) ≥ uR(ω
∗, a2). In our example

(see Figure 2), both the sender and the receiver prefer action a1 over a2 in state ω∗ = ω0.
7A non-degenerate belief refers to a belief where the probability distribution assigns positive probability

to more than one state.
8We omit non-generic cases where the receiver has multiple best responses at any degenerate belief.
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Hence, the equilibrium is not ex-post efficient in state ω∗. The deviation to play the sender’s
preferred action a1 is profitable and does not satisfy condition (i) of Proposition 2.

Now, consider a non-influential (or babbling) equilibrium where the receiver always plays
the action a ̸= a∗.9 As we assume the prior lies in the interior of the belief simplex, as
before, we can identify a state ω∗ where the receiver prefers the sender’s preferred action a∗

over a. For example, given a prior p ∈ [0.6, 0.8] in Figure 2, the equilibrium is babbling,
resulting in action a3 with certainty. However, both players prefer the action a∗ = a1 over a3
in state ω∗ = ω0. So, the equilibrium is not ex-post efficient in state ω∗. To summarize, any
cheap talk equilibrium that does not induce the sender’s preferred action a∗ with certainty
is inefficient.

(⇐) The babbling equilibrium where the sender’s preferred action a∗ is induced with
certainty is an efficient outcome. In this case, the sender gets the highest payoff within his
feasible set, ensuring that the outcome lies on the Pareto frontier.

Therefore, in cheap talk models with state-independent sender payoffs, we can precisely
determine the efficiency of any equilibrium outcome. An outcome is efficient if and only if it
corresponds to the babbling equilibrium, in which the receiver plays the sender’s preferred
action a∗. In this case, the outcome would have been efficient even without communica-
tion. Thus, any non-trivial equilibrium in which communication affects the receiver’s action
necessarily leads to inefficiency.

3.1.2 Bayesian persuasion

In Bayesian persuasion, the sender commits to his signaling policy prior to observing the
state of the world. This contrasts with cheap talk, where the sender cannot commit and
chooses a message after observing the state. Our goal is to analyze the efficiency of the
equilibrium outcome of Bayesian persuasion.

The sender’s objective is to persuade the receiver to take actions that maximize his ex-
ante expected payoff. As is standard in the literature, we assume that the ties are broken in
favor of the sender. It is without loss of generality to restrict attention to direct signaling
policies. Given prior p ∈ ∆Ω, let µ∗

p denote the equilibrium outcome of Bayesian persuasion.
This outcome and the corresponding direct policy are generically unique.

Definition 6. The Bayesian persuasion (BP) outcome µ∗
p : Ω → ∆A solves the

9If the receiver chooses a mixed action, select a pure action from the support that differs from the sender’s
preferred action, that is, pick action a ∈

⋃
m supp(τ(m)) such that a ̸= a∗.
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following linear program:

max
µ:Ω→∆A

∑
ω∈Ω

p(ω)
∑
a∈A

µ(a | ω)uS(ω, a) (24)

subject to ∑
ω∈Ω

p(ω)µ(a | ω)
[
uR(ω, a)− uR(ω, b)

]
≥ 0 ∀a, b ∈ A. (25)

Equation (25) corresponds to the receiver’s obedience condition: given a recommended
action a, the receiver prefers following it to deviating to any other action b.

In Kamenica and Gentzkow (2011), the BP outcome is characterized using the concavi-
fication approach (Aumann et al., 1995). Denote by Cav V : ∆Ω → R the concave envelope
of the value function V . The sender’s expected payoff in the BP outcome is given by the
evaluation of the concave envelope at the prior: Eµ∗

p
[uS(ω, a)] = Cav V (p).
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Figure 3: Bayesian persuasion: The value function (blue solid) and its concave envelope (red
dotted).

The value function and its concave envelope for Example 1 are depicted in Figure 3. The
outcomes in Example 1 correspond precisely to the BP outcomes for the respective priors:
(a) p = 0.10, (b) p = 0.30, and (c) p = 0.70. As seen in Figure 1, the BP outcome is efficient
for case (b), not for cases (a) or (c). Moreover, since the support of the outcome remains
constant within the convex regions defined by the concave envelope, the BP outcome µ∗

p is
efficient for p ∈ [0.2, 0.4] and inefficient for p ∈ (0, 0.2) ∪ (0.4, 1).
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Buyer-Seller Interactions: In this section, we examine a natural class of buyer-seller
interactions, where the necessary condition for efficiency is not satisfied by the BP outcome
for a wide range of parameters. First, by fixing the receiver’s preferences we find a large
range of priors for which the BP outcome is inefficient. On the other hand, fixing a prior we
show that there is a range of preferences for which the BP outcome is inefficient.

For motivation, consider the following situation: a seller (S) provides information to a
buyer (R) about which product to purchase, if any, from a set of n products. The buyer
chooses from the action set A = {0, 1, ..., n}, where action i for i = 1, ..., n corresponds to
buying product i and action 0 corresponds to not buying any product. The state space is
given by Ω = {ω0, ω1, ..., ωn}, where ωi for i = 1, ..., n denotes the state when it is optimal
for the buyer to purchase product i and ω0 denotes the state when it is optimal for the buyer
to not purchase any product. The seller’s payoff is state-independent. He gets uS(i) > 0 if
product i is bought and gets zero if no product is bought, that is, uS(0) = 0. The seller and
buyer share a common prior p ∈ int(∆Ω), where the buyer’s optimal action under the prior
is to not purchase anything.

Let Ci ⊂ ∆Ω denote the convex subset of the belief space where the receiver’s optimal
action is i. The collection of these subsets for all actions {Ci}i∈A forms a partition P =

{C0, C1, . . . , Cn} of the belief space ∆Ω (see Figure 4).

Ci := {p ∈ ∆Ω : Ep[uR(ω, i)] ≥ Ep[uR(ω, j)] ∀j ∈ A}. (26)

We consider a partition P = {C0, C1, . . . , Cn} of the n + 1 convex sets (induced by
receiver’s preferences) that satisfy the following properties:

1. The receiver’s optimal action in state ωi is i, i.e., ωi ∈ Ci ∀i = 0, . . . , n. To avoid
non-generic situations, we further assume that there is an open neighbourhood Nωi

such that ωi ∈ Nωi
⊂ Ci.

2. For any pair of distinct products i and j (j ̸= i and i, j ̸= 0), Ci ∩ Cj = ∅.

Condition 1 ensures that it is optimal to take action i when the receiver is sufficiently
confident that the state is ωi. Condition 2 ensures that when the receiver is unsure whether
the product is i or j, he prefers not to buy either product (i.e., take action a0).

To characterize the BP outcome µ∗
p, we follow Lipnowski and Mathevet (2017) and restrict

the feasible posteriors to the finite set of outer points Out(P) of the partition P .
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Out(P) :={p ∈ ∆Ω : p ∈ ext(Ci) whenever p ∈ Ci ∈ P}, (27)

=
( n⋃
i=0

ωi

)
∪
( n⋃
i=1

⋃
j ̸=i

oij
)
, (28)

where oij is the (unique) extreme point of the convex set Ci that lies on the line segment
joining vertices ωi and ωj.10 Lipnowski and Mathevet (2017) shows that the equilibrium
outcome can always be induced using this set of posterior beliefs Out(P). They further
show that we only need to consider an affinely independent collection of these beliefs. In our
setting, this implies that the equilibrium signaling policy does not need to induce more than
n+ 1 posterior beliefs.

C1

C2

C0
p

ω0 ω1

ω2

o21

o12

o20

o10

Figure 4: Receiver’s belief space for n = 2.

Let n = 2 and the prior p be as shown in Figure 4. Any feasible outcome, where the
posterior belief belongs to the set of outer points, induces all three actions. Under the BP
outcome, the seller fully reveals state ω0 leading the buyer to take action a0. However, the
seller only partially reveals the other states, inducing both actions a1 and a2 with positive
probability in states ω1 and ω2, respectively. The posteriors in the BP outcome cannot place
positive weight on nodes ω1 and ω2, since another feasible outcome that the sender strictly
prefers is available. This deviation increases the probability of the seller’s preferred actions
a1 and a2 and reduce that of the least preferred action a0. This is achieved by inducing the
beliefs o10, o12, o20, o21 instead of ω1 and ω2. As a result, the BP outcome is inefficient, as it
is necessarily mixed. Either all three actions a0, a1, and a2 occur in state ω0, or actions a1

and a2 are both played in states ω1 and ω2, violating the necessary condition of Theorem 1.
We generalize this idea for n products and show that it is always possible to find a set

R∗ ⊂ C0, where dim(R∗) = dim(∆Ω) = n, such that the BP outcome µ∗
p is inefficient for any

prior p ∈ R∗. The crux of the proof relies on finding a region where the BP outcome induces
10As we break ties in favor of the seller, the buyer takes action ai (where uS(i) > uS(j)) if the belief oij

is induced.
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at least three actions which cannot have support on any vertex ωi for i ̸= 0. We show this
violates the necessary condition in Proposition 1.

Proposition 5. For n ≥ 2, there exists a set R∗ ⊆ C0 such that the BP outcome µ∗
p is

inefficient for all p ∈ int(R∗).

C1

C2

ω0 ω1

ω2

R12

H0

H2

H1

Figure 5: The set R12 (orange region) for n = 2.

Proof. Let Hi for i ̸= 0 be the hyperplane defined by the set of points {ω0}
⋃

j ̸=i,0{oji} (see
Figure 5). The hyperplane Hi separates the convex set Ci from Cj for all j ̸= i, 0. Denote
by Ri the region in the simplex given by the half-space of Hi that includes Ci. For any prior
p ∈ Ri, it is necessary that any feasible outcome induces action i. Similarly, let H0 be the
hyperplane defined by {o10, ...., on0} and R0 denote the convex region in the simplex that
includes the node ω0 and is separated by the half-space of H0. For any prior p ∈ R0, it is
necessary to play action 0 under any feasible outcome.

For any i, j ̸= 0 let Rij = Ri ∩ Rj ∩ R0 (see Figure 5). The convex set Rij is non-empty
as ω0 ∈ Rij. In fact, we show that dim(Rij) = dim(∆Ω) = n for all i, j ̸= 0. Given a
system of inequalities Ax ≤ b, an inequality aTi x ≤ bi in Ax ≤ b is an implicit equality if
aTi x̄ = bi ∀x̄ ∈ {x : Ax ≤ b}. A polyhedron R ⊆ Rl has full dimension (dim(R) = l) if and
only if it has no implicit equality (see Conforti et al., 2014). The polyhedron Rij is defined
by the system of inequalities of the hyperspaces R0, Ri and Rj. If the polyhedron Rij has
an implicit equality, then all points p ∈ Rij lie on the hyperplane H0, Hi or Hj. But this
happens only if oij = oji or ok0 = ω0 where k = i, j. But as we assume (1) there is an open
neighbourhood Nω0 ⊂ C0 and (2) Ci ∩ Cj ̸= ∅, we can conclude there is no implicit equality
for the polyhedron Rij. Thus, we have dim(Rij) = dim(∆Ω) = n.

Given prior p ∈ Rij, any feasible outcome induces the actions i, j and 0. We claim that
posteriors of the BP outcome cannot include the vertices ωi or ωj. We prove by contradiction,
assume the feasible outcome µ1 is optimal and its induced posteriors include the vertex ωi. As
p ∈ R0, it needs to induce action 0 and its support includes the node ω0. Now, as oi0 ∈ (ω0, ωi)

and is separated from p by the hyperplane H0, there exists a feasible outcome µ2, where the
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belief oio is induced instead of ωi. This outcome leads to a higher probability of action i and
conversely a lower probability of action 0. Let λi denote the weight of outcome µi on its
posteriors. We have λ2(oio) =

λ1(ωi)
oio(ωi)

> λ1(ωi) and λ2(ω0) = λ1(ω0) − λ1(ωi)oi0(ω0)
oi0(ωi)

< λ1(ω0).
The weight on all other actions j ̸= i remains the same. Thus, µ2 is a profitable deviation
and the posteriors of the BP outcome cannot include ωi or ωj.

Using the above result, for any prior p ∈ Rij, the BP outcome µ∗
p has either (a) three

actions i, j and 0 played in state ω0 (eg:
⋃

m∈M qm = {ω0, o10, o20} in Figure 4) or (b) mixed
outcomes in states ωi and ωj (eg:

⋃
m∈M qm = {ω0, o12, o21} in Figure 4). This violates the

necessary condition for efficiency in Theorem 1. The set R∗ =
⋃

j ̸=0

⋃
i ̸=j,0 Ri ∩ Rj ∩ R0

combines the regions Rij for all pairs of distinct products i and j.

In the previous proposition, we fixed the underlying preferences of the players and looked
at priors for which the BP outcome is inefficient. In the next proposition, we fix a prior
and look at partitions induced by the receiver’s preferences for which the BP outcome is
inefficient.

Consider a receiver who only buys a product when he is sufficiently confident about the
state, i.e., he only buys product i if his belief on state ωi is above a certain threshold T

(where T > 0.5).11 The threshold can be interpreted as the receiver’s risk attitude (for
buying a product). A higher T implies a receiver who is more risk averse. The convex subset
Ci, where the receiver’s optimal action is i, is given by:

Ci = {p ∈ ∆Ω | p(ωi) ≥ T} ∀i = 1, . . . , n, (29)

C0 = ∆Ω \
n⋃

i=1

Ci. (30)

Let PT = {C0, ..., Cn} denote the partition where the receiver’s preference is given by
threshold T . We show that for any prior p, there exists a bound Tp such that for any
threshold T > Tp, the BP outcome is inefficient.

Proposition 6. For any prior p ∈ int(∆Ω), there exists a threshold Tp < 1 such that the
BP outcome µ∗

p is inefficient with respect to the partition PT for all T > Tp.

Proof. First, we show for any p ∈ int(∆Ω) and action i, there exists a threshold T i
p such that

whenever T > T i
p, any feasible outcome induces action i. Using this characterization, we

then show that there exist receiver preferences under which the BP outcome µ∗
p is inefficient

for the partition PT .
11A similar class of preferences is considered in Aybas and Turkel (2019).
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Let q denote the point of intersection between the line joining the points ω0 and p and
the face F0 = {p ∈ ∆Ω : p(ω0) = 0}. Recall, the hyperplane Hi defined by the points
{ω0}

⋃
j ̸=i,0{oji}. It separates Ci and the convex sets {Cj}j ̸=i,0. The point p lies in the

region Ri if T ≥ T i
p = 1 − q(ωi) (see Figure 6). This follows as p ∈ Ri if and only if it’s

projection q ∈ Ri. And q belongs to Ri (for i ̸= 0) if and only if q(ωi) ≥ 1 − T . Similarly,
the hyperplane H0 separates the vertex ω0 and the convex sets {Cj}j ̸=0 and we have p ∈ R0

if T ≥ T 0
p = 1− p(ω0).

C1

C2

p

q

ω0 ω1

ω2

T 1
p

Figure 6: Threshold beliefs for n = 2.

Let i∗ = argmax
i ̸=0

q(ωi) and let j∗ = argmax
i ̸=0,i∗

q(ωi). The vertices ωi∗ and ωj∗ represent the

states that are closest to the projection q ∈ ∆Ω. We have p ∈ int(Ri∗ ∩Rj∗ ∩R0) if

T > Tp = max{1− p(ω0), 1− q(ωi∗), 1− q(ωj∗)}. (31)

Since the common prior p ∈ int(∆Ω), we have p(ω0) > 0 and q(ωi) < 1 for i ̸= 0. Hence
each term in Equation (31) is strictly less than 1, and therefore Tp < 1.

Therefore, whenever T > Tp, the Bayesian persuasion outcome µ∗
p lies in R∗ and is

inefficient with respect to the partition PT .

3.2 Peer Selection Mechanisms
In this section, we analyze the mechanism design problem without transfers studied in
Niemeyer and Preusser (2024). A single indivisible good needs to be allocated. There
are k players: one principal and k − 1 agents, where k ≥ 3. The state is denoted by
ω = (ω1, . . . , ωk−1) ∈ Ω, where Ω =

∏k−1
i=1 Ωi. Agent i’s private type is ωi ∈ Ωi, where

|Ωi| ≥ 2. If agent i receives the good, his payoff is 1 and 0 otherwise. The principal’s payoff
from allocating to agent i is a type-dependent value ui ∈ [−1, 1], while keeping the good
his payoff is 0. Let p denote the common prior over the set of states (type profiles). Let
A = {0, 1, . . . , k − 1} denote the set of pure actions, where a = 0 means the principal keeps
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the good and a = i means agent i receives it. The payoff of the players depends only on the
state and the action.

A (direct) mechanism is a mapping µ : Ω → ∆A, where µ(a | ω) is the probability
that action a is taken when the state is ω. Dominant-strategy incentive compatibility (DIC)
requires that truthful reporting maximizes each agent’s allocation probability:

µ(i | ωi, ω−i) ≥ µ(i | ω′
i, ω−i), ∀ωi, ω

′
i ∈ Ωi, ∀ω−i ∈ Ω−i, ∀i ∈ {1, . . . , k − 1}. (32)

The principal’s goal is to find the optimal mechanism: the DIC mechanism that maxi-
mizes his expected payoff. Because the objective is linear and the set of DIC mechanisms
is convex, any optimal mechanism is a convex combination of extreme DIC mechanisms. In
particular, they show that when the state space is sufficiently rich, essentially all extreme
mechanisms are stochastic. Consequently, randomization is an inherent structural feature
of optimal mechanisms.

Ranking-based mechanism Because optimal mechanisms lack closed-form descriptions,
Niemeyer and Preusser (2024) introduce ranking-based mechanisms, which are simple yet
approximately optimal. These mechanisms work in two steps. First, fix a threshold t ∈ (0, 1]

and let ri(ω) denote agent i’s rank at state ω, normalized on the scale { 1
k−1

, 2
k−1

, . . . , 1}
according to peer value ui(ω−i) := E[ui | ω−i]. The principal randomly selects one of these
eligible agents ranked among the top t(k − 1) agents. Second, the principal allocates the
good to the selected agent if and only if his robust rank r∗i (ω−i) = maxωi∈Ωi

ri(ωi, ω−i) also
lies within the top t(k− 1) and his peer value is non-negative. If the selected agent fails this
eligibility test, the good is kept by the principal. Thus, each eligible agent is assigned the
good with a probability of at most 1/(t(k− 1)), and any leftover probability mass is kept by
the principal.

A crucial factor for the performance of ranking-based mechanisms is the impact that any
individual agent’s report has on his own rank, which they refer to as the informational size.
For each state ω, the informational size is defined as

δ(ω) := max
i∈{1,...,k−1}

max
ω′
i∈Ωi

∣∣ri(ωi, ω−i)− ri(ω
′
i, ω−i)

∣∣. (33)

When informational size is large, many agents can manipulate their position above the
threshold, and the mechanism may erroneously withhold the good. When it is small, no single
agent can substantially affect rankings. This assumption is natural in large environments
with many agents, where each individual’s type has only limited influence.

We impose some mild conditions, similar to Niemeyer and Preusser (2024). First, for
every state, there exists at least one agent with non-negative peer value, and the threshold is
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chosen such that t > 1
k−1

+δ(ω). Together, these assumptions guarantee that there is at least
one eligible agent to whom the principal will allocate the good if selected. Second, to avoid
trivial situations, we assume t(k−1) ≥ 2, so that there are at least two eligible agents in every
state. Ranking-based mechanisms are approximately optimal when the informational size
is small and there are a large number of agents. We show that, under similar assumptions,
these mechanisms are generically inefficient.

Proposition 7. Suppose that for every state ω, the threshold t satisfies t ≥ max
{

1
k−1

+

δ(ω), 2
k−1

}
, and that there exists at least one agent i with non-negative peer value ui(ω−i) ≥ 0.

Then, generically, the ranking-based mechanism is inefficient.

Proof. Under our assumptions, in the first step the principal randomly selects among at least
two agents, i.e., t(k − 1) ≥ 2. At least one of these agents, if chosen, is allocated the good.
Hence, with positive probability, either two distinct agents receive the good or one agent
and the principal do. Thus, for all ω ∈ Ω, we have |µ(ω)| ≥ 2. Moreover, since each agent
has at least two types, |Ω| =

∏k−1
i=1 |Ωi| ≥ 2k−1. Therefore,

∑
ω∈Ω |µ(ω)| ≥ 2|Ω| > k + |Ω|,

where the last inequality uses 2k−1 > k for k ≥ 3. This contradicts the bound in Theorem 1,
so the outcome induced by the ranking-based mechanism is inefficient.

4 Conclusion
This paper analyzed Pareto efficiency in games with incomplete information. We identified
necessary conditions based on the number of actions taken across states—independent of the
prior and the extent of randomization. We found that any stochastic cheap talk outcome is
generically inefficient, and when the sender’s preferences are state-independent, it is efficient
if and only if the sender’s preferred action is chosen with certainty. In Bayesian persuasion,
equilibrium outcomes are generically inefficient for a broad set of priors and preferences.
Our results highlight that preference misalignment prevents efficiency in direct communi-
cation between the sender and receiver. Beyond two-player settings, our results extend to
mechanism design, where unavoidable randomization generically leads to inefficiency.

Several directions for future research remain open. A key challenge is to identify suf-
ficient conditions under which persuasion outcomes can be efficient. Moreover, alternative
communication models—such as mediation or delegation—warrant further study. A central
question is whether some communication protocol can guarantee efficiency.
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