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Abstract

How should an expert send forecasts to maximize her payoff given she has to pass
a calibration test? We consider a dynamic game where an expert sends probability
forecasts to a decision-maker. The decision-maker, based on past outcomes, verifies
the claims of the expert using the calibration test. We find the optimal forecasting
strategy by reducing the dynamic game in terms of a static persuasion problem for
the class of stationary ergodic processes. We characterize the value of expertise by
showing that an informed expert can achieve the best outcome in the persuasion
problem, while an uninformed expert can only achieve the worst. We also compare
the calibration test and regret minimization as heuristics for decision-making. We
show that an expert can always guarantee the calibration benchmark and in some
instances, she can guarantee strictly more.
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ability.
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1 Introduction

Probability forecasts are widely used by experts to provide information about stochas-
tic events. The forecasts shape the beliefs of decision-makers and persuade them to
take specific actions. For example, investors rely on forecasts by financial analysts to
determine which asset will achieve the best performance. However, the decision-maker
follows the expert’s forecasts only if they are credible. One way to determine credibility
is to perform statistical tests on data and verify the claims of the expert. We focus on an
objective and reasonable test: calibration. It is based on the frequency interpretation of
probability. The basic idea is to check if the forecast of a state matches the actual pro-
portion of times the state occurred when the forecast was announced a large number
of times. For example, the investor checks if an asset outperformed others 70% of the
days on which an analyst claimed the chance of it being the best was 0.7. Calibration is
central to forecasting and is used to assess the accuracy of prediction markets [Page and
Clemen, 2012]. Decision-makers rely on accurate forecasters to take optimal actions.
But in many settings, the expert herself has skin in the game and is impacted by the
decision-maker’s action. This preference misalignment leads to strategic forecasting.
For example, if a financial analyst receives a high commission when a particular asset
is bought, her predictions might favour this asset. We study the extent of an expert’s
utility gain from strategic forecasting under a dynamic decision problem. Our main fo-
cus is on an informed expert who knows the data-generating process and could pass any
complex statistical test, including calibration. Given that she can be tested on the basis
of some calibration criterion (and failure leads to a large loss), how should an expert
send forecasts to maximize her utility?

To do this, we develop a dynamic sender-receiver model. The state of nature evolves
over time according to a stochastic process. At every period, the sender sends a proba-
bilistic forecast about that day’s state to the receiver. The receiver performs the calibra-
tion test to determine the sender’s credibility. If the sender passes the calibration test,
the receiver takes the forecasts at face value and plays as if the state is drawn according
to the forecast. Else he takes a punishment action that results in a loss for the sender.
The sender seeks to persuade the receiver to choose actions that are aligned with her
preferences.

One of the basic assumptions made in dynamic sender-receiver models is that the
receiver either knows the true distribution of the process or has a prior belief over the
states. Thus, given the sender’s strategy, he can perfectly analyze the messages, deduce
the posterior beliefs and take actions. Handling such beliefs in equilibrium, even in
simple situations, is a daunting task. In contrast to the Bayesian setting, we focus on
the case where the receiver does not know the distribution of the state nor has any prior
belief over the distribution to begin with. He simply verifies the claims of the sender
using the data so far: the forecasts and the states. The receiver uses the calibration test
to determine the credibility of the sender. An informed sender who provides honest
forecasts passes the calibration test with a very high probability.



We first analyze the case of an informed sender, who knows the data-generating
process. She can always pass the calibration test by reporting honestly but there can
be other strategies that passes the test. We show the requirement to pass the calibra-
tion test limits the distribution of forecasts that can be induced. For a natural class of
stochastic processes, we show that any distribution of forecasts can be implemented by
a calibrated forecasting strategy if and only if it is (weakly) less informative than dis-
tribution of forecasts one gets from honest reporting. Overall, the forecasts need to be
accurate but can be less precise than honest forecasts.

Our main result shows that the sender’s highest payoff coincides with the sender’s
equilibrium payoff in a static persuasion problem. The state space of the persuasion
problem is given by the set of all possible forecasts of the dynamic game and the prior
distribution is given by the distribution of honest forecasts. In the static problem,
a sender persuades an receiver by committing to a signaling policy. Kamenica and
Gentzkow [2011] and Arieli et al. [2020] characterize the optimal signaling policy that
maximizes the sender’s ex-ante expected payoff. The optimal forecasting strategy is
given by the optimal signaling policy of the persuasion problem. The strategy is sta-
tionary as it only depends on the period’s conditional distribution of the states. To
summarize, we solve the dynamic forecasting game by showing it is equivalent to a
static persuasion problem.

Our second set of results characterizes the maximum payoff an uninformed sender,
who does not know the data-generating process, can guarantee. Foster and Vohra [1998]
show that even an uninformed sender can pass the calibration test for any process. As
in the case of an informed sender, we analyze the equilibrium outcome and payoffs
of the dynamic game in terms of the static persuasion problem. However, for an un-
informed sender, the prior belief is given by the (limit) empirical distribution of the
states. First, we model Nature as an adversary trying to prevent the sender from pass-
ing the test. The maximal payoff that she can guarantee in an adversarial environment
corresponds to the sender’s worst signaling policy of the persuasion problem. This pay-
off is (weakly) lower than the payoff an informed sender can get by honest reporting.
Next, we show that if the environment is non-adversarial, the sender can guarantee
much more. For a natural class of processes, the sender can (approximately) guarantee
the payoff that corresponds to the no information (or babbling) signaling policy of the
persuasion problem. This implies that the uninformed sender is always able to learn
the empirical distribution of the states. Thus, we are able to compare what an informed
and uninformed sender can guarantee and characterize the value of information for a
process.

We use our forecasting model to analyze a financial app that sends forecasts to its
users about a state that evolves according to a Markov chain. Additionally, the users
can sequentially observe signals by paying a price to the app. The app’s utility depends
on the amount of signal acquired from users and its reputation for announcing precise
forecasts. On one hand, a precise forecast results in higher utility from reputation but
on the other hand reduces the amount of signals a user will acquire. We characterize



the optimal forecasting strategy for the app using the concavification approach. The
optimal forecasting strategy, at any stage, only depends on the that day’s conditional
distribution of the states. The forecasts need to be accurate to pass the calibration test.
But even though the app has access to precise information it prefers to send garbled
(less informative) forecasts.

Finally, we also model the receiver’s behaviour using regret, given its close connec-
tion with calibration (see Perchet [2014]). The receiver’s regret measures the difference
in payoff he could have gotten and what he actually got. Heuristics based on regret
minimization ensure that, in hindsight, the receiver could not have done better by play-
ing any fixed action repeatedly. We show that a receiver has no regret if he follows the
recommendations of any calibrated forecasting strategy. This provides a justification to
use the calibration test as a heuristic in non-Bayesian environments. On the other hand,
we show that when facing a regret minimizing receiver, the sender can guarantee the
equilibrium payoff in the persuasion problem , as in the case of the calibration test. In
fact, we provide an example, for a natural class of regret minimizing algorithms, where
she can guarantee strictly more.

Our paper makes contributions to different strands of the literature. We develop
a general framework to analyze the strategic interaction between a forecaster and a
decision-maker. We introduce the calibration test as a heuristic for decision-making,
which has previously been used mostly from a statistical viewpoint. We characterize the
optimal forecasting strategy when the calibration test is used as the credibility criterion.
We provide a micro-foundation for the commitment assumption in static persuasion
models. Our results show that the dynamic interaction between a sender and receiver
performing the calibration test is equivalent to a static persuasion model where the
sender has ex-ante commitment. Finally, we show a novel connection between regret
minimization and the calibration test, both of which can be viewed as heuristics for
decision-making in non-Bayesian environments.

1.1 Related Literature

Information disclosure: Our work contributes to the literature on communication be-
tween informed senders and uninformed receivers. In cheap talk [Crawford and Sobel,
1982], the message sent by the sender is unverifiable. While in Bayesian persuasion
[Kamenica and Gentzkow, 2011], the sender has exogenous commitment and her mes-
sage is verifiable. Our work contributes in investigating how well dynamic cheap talk
interactions substitute for the commitment assumption [Best and Quigley, 2020]. A re-
lated paper is Guo and Shmaya [2021], who consider a static model of forecasting and
introduce an exogenous cost of miscalibration. Our dynamic model can be thought of
as an endogenous microfoundation for their cost of miscalibration. Under reasonable
assumptions, we show that the dynamic forecasting game can be characterized in terms
of the static persuasion problem (with a large state space)[Arieli et al., 2020].



Calibration and Expert Testing: The initial focus of this literature has been to show
that an agent who only knows the test and does not know the data-generating process
can pass a class of statistical tests. Foster and Vohra [1998] show that an uninformed
expert can guarantee calibration without knowing the data-generating process. Most of
the literature (apart from Echenique and Shmaya [2007], Gradwohl and Salant [2011]
and Olszewski and Peski [2011]) have looked at tests from a statistical standpoint with-
out focusing on the underlying decision problem. We show that the expert’s incentive
to report honestly depends on the decision problem and we analyze the extent of utility
gain from strategic misreporting. In line with the literature, we compare the attainable
payoffs that an informed and uninformed expert can guarantee for a process. Cali-
bration also has important applications in machine learning (see Gupta and Ramdas
[2021]). We refer curious readers to Foster and Vohra [2013] and Olszewski [2015] for
a good survey on the topic.

No-Regret and Online Learning: There has been a growing interest in implementing
regret minimization in dynamic interactions. We focus on optimization against regret
minimizing agents. The closest paper is Deng et al. [2019] . We use a natural class of
regret learning algorithms called mean-based learning algorithms introduced by Braver-
man et al. [2018]. A common theme in both papers is that they show the optimizer can
obtain a higher utility than the rational benchmark. On a similar note we show, against
a mean-based learner, the sender can obtain a higher utility than the calibration bench-
mark. We solve our constrained dynamic optimization problem using tools from online
learning (see Bernstein et al. [2014], Mannor et al. [2009]).

Bounded Rationality: Both the calibration test and regret minimization can be seen
as explicit procedures for decision-making. On a general level, our model is a dynamic
interaction between a rational sender and a boundedly rational receiver [Rubinstein,
1998]. The sender is a strategic agent while the receiver is a non-strategic agent who uses
heuristics [Spiegler, 2014].

1.2 Organization

Section 2 introduces the model and defines the calibration test. In section 3, we present
the persuasion problem, prove our main results for the case of informed and unin-
formed sender and finally provide an application. In Section 4, we consider a receiver
who minimizing regret. In Section 5, we conclude and discuss future work. All omitted
proofs are in Appendix A. In Appendix B, we consider an environment where the action
of the decision-maker affects how the states evolves.



2 Model

We consider a dynamic game of incomplete information between two players: sender
(she) and receiver (he). At each period, the sender sends a forecast (message) about that
day’s state which is unobserved by the receiver. The receiver then chooses an action.
The state and action of that period are observed before proceeding to the next period.

Let Q) denote the finite set of states, F C AQ) denote the set of forecasts over the
states, and A denote the finite set of actions. Denote a “play”, i.e., an infinite sequence
of states, by w™ = (wy,....). The state w; evolves over time and is governed by a stochastic
process with distribution p € AQ®. Denote by w; and ' = (wy, ..., w;_;) the state and
history of states at time t respectively. We assume the sender is informed and knows
the distribution of the process while the uninformed receiver does not. Given y € AQQ*,
the sender can compute the conditional distribution p; € AQ of the state w; given the
history o', i.e., p; = p(w; | @) € AQ. We assume that the conditional distribution p;
takes values from a finite set D C AQ ! (the assumption holds for instance for standard
finite Markov chains).

At stage t, the receiver’s action a;, together with the state w;, determines the stage
payoff ug(w;, a;) and ug(wy, a;) for the sender and receiver respectively. The sender’s
goal is to maximize her long-run average payoff. She does not take the action herself
but can persuade the receiver into taking actions that are aligned with her preference.
She does this by providing information in the form of probabilistic forecasts. At each
period t, she chooses the forecast f; based the history of states and forecasts. Formally,
the sender’s forecasting strategy is a map o : U;s (F x Q)1 — AF. Unless specified
otherwise, the set of feasible forecasts F = AQ).

Calibration test: To model the receiver’s behaviour, we take a frequentist approach
using the calibration test. Given he has no prior information nor belief over the sender’s
strategy, he verifies the claims of the sender by performing the calibration test on the
data so far. He checks if the predicted forecasts match the empirical distribution of
the states when the forecast was made. For each round ¢, given an error margin €;, he
checks if the forecasts are close to the realized frequency of the states.

Formally, fixing an error margin €7, the receiver performs the ep-calibration test at
round T. Based on the history of states and forecasts hp = (f;, wy,...wo7r_1, fr), he checks
if the forecasts are ep-close to the empirical frequency of the states.

Definition 1 A T-sequence of forecasts (ft)tT:1 is ep-calibrated if
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Tn case P is not finite, we can construct a finite e-grid P = {p;;] € L} such that for any p € AQ we have a
k € L such that ||[p—pill < e.



where, N7[f] and wr|[f] refers to the set of stages and the empirical distribution of states
when the forecast is f up to stage T respectively and || -|| is the Euclidean norm, i.e.,
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where, 6., denotes the Dirac distribution on state w.

Intuitively, a T-sequence of forecasts is ep-calibrated if the empirical distribution of
states wr[f]is close to f for all possible f (that were used, this is why, even though the
set F might be infinite, the sum in the above definition is implicitly defined, over the
forecasts actually sent once).

Pass: A sender passes the calibration test at stage t if the sequence of forecasts {f;}!_,
is €;-calibrated. In this case, the receiver takes the forecast at face value and responds as
if the state w; is drawn randomly according to the forecast f;. He plays as if his beliefs
over the states match with the sender’s forecast f;. He plays the action 4(f;), where 4(f;)
denotes the receiver’s optimal action given his belief over states is f;, i.e.,?

i(fi) = argmax{ ) fulw)ug(w,a)) 3)

acA we

Fail: If the sender fails the test, he uses an action that results in a punishment cost
¢ > 0 for the sender in that round. The punishment does not last forever. The receiver
does not play according to the sender’s forecast until she passes the calibration test at a
later round. This action can be interpreted as the the receiver’s safe action, which is also
the sender’s least preferred action. For example, in the case of financial forecasting, it
could correspond to not buying any asset, which results in zero commission for the ana-
lyst. The punishment cost could also be interpreted as a loss in credibility or reputation
from inaccurate predictions. One can imagine an intermediary (or platform) perform-
ing the calibration test, where in a sender’s forecast is only forwarded to the receiver if
it passes the calibration test. Our motivation is to study the extent of persuasion when
the receiver uses the calibration test as the credibility criterion. So, our focus will be on
a high punishment cost which enforces calibration.

Note that, for some e > 0, no forecasting strategy will be er-calibrated for all pos-
sible T-sequence of states and forecasts. Even if a sender provides honest forecasts
(f; = pt), there is a non-negligible chance that the sequences of forecasts will not be ep-
calibrated. However, as we collect more data the forecasts become close to the empirical
distribution of states for almost all sequences of states. This motivates the definition of
the (asymptotic) calibration test.

Definition 2 A forecasting strategy o is e-calibrated if

2Given multiple optimal actions, we arbitrarily choose to break ties in favour of the sender.
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A forecasting strategy o is calibrated if it is e-calibrated, for every € > 0.

Intuitively, a forecasting strategy o is calibrated if the limit empirical distribution
of states exactly matches with f for all possible f that were used sufficiently often.
We’ve already seen that the requirement to pass the ep-calibration test for all rounds T
is too demanding. But is it possible for a forecasting strategy to pass the (asymptotic)
calibration test? Yes, an honest informed sender passes the calibration test almost surely
(see Dawid [1982]). Infact, we can form a sequence of error bounds {er}7-;, for the finite
periods, such that limy_,, e7 = 0 and an honest sender only fails the ep-calibration test
in finitely many periods (see Proposition 5 in the appendix). Throughout this paper, we
assume the sequence of error bounds {e7}7-; satisfy this property.

Assumption 3 The sequence of error margins {€}r-, are such that limr_,, et = 0 and an
honest sender only fails the e -calibration test finitely many times (almost surely).

One cannot provide a universal sequence of error margins because the rate of con-
vergence depends on the underlying stochastic process p. This assumption ensures the
type I error vanishes and the calibration test does not reject an honest sender. ° If
a sequence of errors did not satisfy this assumption, even an honest sender might be
punished infinitely often. To clarify, our results do not depend on the specific sequence
of error bounds as long as the assumption 3 is satisfied. Note, this assumption will not
be valid in the case of a uninformed sender (in Section 3.3) where nature acts as an
adversary and the data generating process itself is not fixed.

The overarching objective of the sender is to find the forecasting strategy that maxi-
mizes her long run average payoff:

T
T—o0 T

(5)

We call it the optimal forecasting strategy. If the punishment cost ¢ is small, the
optimal strategy can belong outside the class of calibrated strategies. Our motivation is
to use the calibration test as the credibility criterion for the sender. So, we focus on high
punishment costs where the optimal forecasting strategy needs to pass the calibration
test.

3Type I error is the event of rejecting the null hypothesis given that it is true. In our case, it refers to
rejecting an honest informed sender.



Proposition 1 There exists a punishment cost ¢ = max Ep[ug(w,a) — ug(w,d(p))] such
peAQ,acA

that for all c > ¢ the optimal forecasting strategy has to pass the calibration test.

If the forecasts of the sender are not calibrated, it implies that she failed the ep-
calibration test in infinite rounds along some possible play. So, the sender incurs the
punishment cost c in these rounds. The proposition tells us that if the punishment cost
is sufficiently high, the sender can always do better by providing honest forecasts and
only getting punished in finitely many rounds. This implies that the calibration test
(which does not depend on the error margins) is a necessary criterion for the sender.
The calibration test imposes limitations on the distribution of forecasts a sender can
implement without being punished.

Assumption 4 The punishment cost ¢ >¢.

Thus, to maximize her long run average payoff the sender has to pass the calibration
test, i.e., equation (4) needs to hold.

3 Main Results

Our main result is an equivalence result between the dynamic forecasting game and
a static persuasion problem. First, we introduce the persuasion problem. Then, we
present our main results on how the dynamic forecasting game can be reduced to a
specific persuasion problem.

3.1 Persuasion problem

We consider a static model of persuasion between a sender and a receiver. The state
space is the simplex AQ (where Q) is finite). The players have an (atomic) prior measure
P € A(AQ). The sender commits to a signalling policy 7t : AQ — AF. * Each signal
realization s € F results in a posterior belief about the state and consequently a posterior
mean g € AQ). We assume the receiver’s optimal action only depends on his posterior
mean as his action depends on his belief over the underlying state (3. ®> The players’
utility when the posterior mean is q is given by #;(q). ¢ Overall, the signaling policy
results in a distribution over posterior mean Q € A(AQ). A measure Q € A(AQ) is
implementable by a signaling policy if and only if Q is a mean-preserving contraction
(garbling) of P (see Arieli et al. [2020]). The goal of the sender is to implement the
garbled measure Q that maximizes her expected utility.

4To clarify, the sender does not have commitment power in the dynamic forecasting game.

>This assumption is needed to provide structure to the optimal signaling policy (Arieli et al. [2020],
Dworczak and Martini [2019]).

®This utility function takes into account the receiver’s optimal action, which we assume only depends on
his posterior mean g € AQ.



Let P be a probability measure on a finite support p = (p1, ..., p,,) € RIC*" with mass
A= (A A,) € RV such that A; >0 Vie(l,.,n} and Y, A; = 1. A probability
measure is defined in terms of the mass and the support P := (A, p). Let Q be a proba-
bility measure with support on m points q = (41, ..., 4,,) € RI?X" with respective masses

W= (p1, e ) € RIXM,

Definition 5 A probability measure Q = (u,q) is a simple mean-preserving contraction
(smpc) of P = (A, p), if there exists a row-stochastic matrix G € R™"™ such that:

AG=pu (6)
(Ap)G = (nq) (7)

where Ap = (M1p1,..., Aypy) € ROV and pq = (191, pon Qo) RO

Definition 6 Q is a garbling (or mean-preserving contraction) of P if there exists a sequence
of spmcs {Qy )0y C G(P) that satisfies Q,, —,, Q (weak convergence). Denote by G(P) the

set of all garblings of P.

Intuitively, a mean-preserving contractions takes the fraction G;; of mass A; at p; for
all i and merge them together to get mass y; at q;. We want to determine the optimal
garbled measure Q* that maximizes the sender’s expected utility. Given prior measure P
and utility function g, the solution to the persuasion problem (P, iig) is given by:

Per(P, iig) = Eqlds] = 15(q). 8
er(P,iis) = max Eolils] = max ) mas(q) (8)
q€Supp(Q)

For example, consider QQ = {0, 1}. Let the set of feasible forecasts F = {0.25,0.50,0.75}
and the utility be given by 1i(0.25) = 0,115(0.50) = 1,15(0.75) = 0. The prior measure P
is given below:
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For this example, the optimal garbled measure Q" corresponds to merging the fore-
casts p = 0.25 and p = 0.75 with equal weight A = 0.25 to p = 0.50 (the merging is
represented by red lines in the figures).
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Now, we provide a sufficient condition when the persuasion problem can be solved
using the concavification approach [Kamenica and Gentzkow, 2011] applied to a re-
stricted domain.

Proposition 2 If Supp(P) is affinely independent, then the solution of the persuasion prob-
lem (P, 1ig) is given by

Per(P, 1is) = Cav 1ig| .(B(P)) (9)

where, Cav iig |C denotes the concave envelope of iig restricted to domain C = Co(Supp(P)))
and B(P) =) !, A;p; denotes the barycenter of the measure P. 7

The proof relies on the simple characterization of G(P) when Supp(P) is affinely in-
dependent. The feasibility condition corresponds to Bayes plausibility in the restricted
domain (see Proposition 6 in the appendix). Hence, the solution is given by the concave
envelope restricted to Co(Supp(P)). A perfectly informed sender knows the true state
w € () and can commit to a signaling policy as a function of each state w € ). This cor-
responds to the standard Bayesian persuasion model [Kamenica and Gentzkow, 2011].

Corollary 7 If the sender is perfectly informed, the solution of the persuasion problem (P, 1lg)
is given by

Per(P,1ig) = Caviig(B(P)). (10)

Whitmeyer and Whitmeyer [2021] show that the persuasion problem in equation (8)
attains its maximum at an extreme point of G(P). Thus, if |Supp(P)| = n, it suffices to
restrict our search to measures Q with [Supp(Q)| < n. Dworczak and Martini [2019] and
Arieli et al. [2020] study the persuasion problem for the case of non-atomic measures
P and when Q) = {0,1}. They show that it is sufficient to restrict the search of optimal
signaling policy to bi-pooling policies. Finally, in Section C, we show the persuasion
problem can be modeled in an equivalent way in terms of Blackwell experiments (mean-
preserving spreads).

7Co(A) refers to the convex hull of set A.
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3.2 Optimal Forecasting Strategy

In this subsection, we consider an informed expert, who knows the data-generating
process. We provide a necessary and sufficient condition for a forecasting strategy to
be calibrated. For the class of stationary ergodic processes, the distribution of forecasts
has to be a garbling of the distribution of conditionals. A garbling can be thought of
as merging low-value and high-value forecasts with appropriate weights such that the
overall forecast is calibrated. Finally, we characterize the optimal forecasting strategy.

Let’s define the distribution of conditionals C, € A(AQ):

C — 1 Zthl 1{pt:p} f limi .
u(p) = lim —————  (if limit exists) (11)

T—o0
where, p; = p(- | wy,..., w;_1) € AQ.
Note, p; and C,, is a random variable and depends on the realization of ' and w®

respectively. Given a forecasting strategy o, one can define the distribution of forecasts
F,o € A(AQ):

T
R
M (if limit exists) (12)

F,o(f)= lim
where, f; is chosen randomly according to o(f;, w;...,w;_1). The distribution of condi-
tionals is also the distribution of forecasts by a honest sender (p; = f;).

For a general stochastic process, an informed sender can pass the calibration test by
reporting honestly but it becomes intractable to characterize the set of feasible outcomes
that passes the calibration test. We avoid such situations by focusing on the class of
stationary and ergodic processes. The following example illustrates the importance of
our assumption.

Example 8 Let u be a finite Markov chain that is aperiodic and irreducible. Let Q and 1"
denote the transition matrix and the invariant distribution respectively. From the Ergodic
theorem, we know that the limiting distribution of states converges to the invariant distribu-
tion 1" for any initial distribution 1.

lim Y 7(i)Q"(i,j) = 7*(j) Yo € AQ.

The long-run relative frequency of visiting a state i is 17*(i) along all sample paths and
induces the conditional distribution Q(-|1). Thus, the distribution of conditionals C, exists
and is constant p-a.s. Each support point p; = Q(- | i) has mass A; = 1*(i) respectively,
where i € Q). An informed sender, who knows the transition matrix, knows the (constant)
distribution of conditionals C,,.
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Recall that a stochastic process {w,},cn is stationary if, for any k € IN, the joint dis-
tribution of the k—tuple (w,,, w,41,..., W, 1k-1) does not depend on n. Let y € AQQ* denote
the distribution of the stationary process. Let T : (2 — ()* be the shift transformation
given by T(w), = w,4 for all n € Z. Let Z denote the o—algebra of all invariant Borel
sets for the transformation T. The stationary process {w,},cn is ergodic if 7 is trivial,
that is, IP(A) € {0,1} for all A € Z. All the statistical properties can be deduced from a
single, long realization of the process. This makes the search for the optimal forecasting
strategy tractable.

Recall that the indirect utility ;(f) is the expected payoff when the states are drawn
according to f and the receiver plays the optimal action d(f). Given a calibrated strat-
egy, the empirical distribution of states conditional on forecast f exactly match with the
forecast f. The receiver plays the action d(f) on (almost) all periods when the forecast
f was announced. Thus, for a calibrated strategy, the long run average payoff for player
i when the forecast is f equals #;(f). Now, we state our main result that characterizes
the optimal forecasting strategy.

Theorem 9 For a stationary ergodic process p, the optimal forecasting strategy is given by
the optimal signaling policy of the persuasion problem (C,, iis).

Proof. First, we characterize the set of feasible outcomes for the class of stationary er-
godic processes. To do so, we show that the distribution of conditionals C, converges
and is constant for almost every play (see Lemma 18 in the appendix). Thus, an in-
formed sender knows C,, which corresponds to the prior measure in the persuasion
problem. Using this result we present, in Lemma 10, a sufficient and necessary condi-
tion for a forecasting strategy to be calibrated. The feasible distributions of forecasts
are precisely the set of garblings of the distribution of conditionals C,,.

Lemma 10 For a stationary ergodic process , if a forecasting strategy o is calibrated then
F,s € G(Cy). On the other hand, for any Q € G(C,), we can construct a calibrated strategy
o such that F, ; = Q.

Lemma 10 outlines the set of feasible distribution of forecasts given the forecasting
strategy has to pass the calibration test. Given the distribution of conditionals C,, the
sender can implement any garbled measure Q € G(C,). This includes the solution to
the persuasion problem (C,,1s). Infact, any Q € G(C,) can be implemented using a
stationary strategy that depends on the conditional of that round. This ensures any
sequence of error bounds {er}7_; chosen by a honest sender would also work for any
calibrated strategy. The sender only fails the ep-calibration test and faces punishment
in finitely many rounds.

We now construct the optimal forecasting strategy. Given the distribution of condi-
tionals C, , let °: AQQ — AF and Q" = (p, f) denote the optimal signaling policy and
optimal garbled measure for the persuasion problem (C,, is). Consider the forecasting
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strategy o;(f; = f | p = p) = ©°(f | p) for all t. At any period t, the strategy only de-
pends on the current conditional p; and thus is stationary. We show that it achieves the
optimal persuasion payoff.

T
thl ug(wye, az)

= lijr}l)inf T (13)

< i L resupp@) Lpen ¥ (f u;)ztll Lip,=p) 45 (@, () 14

=) Culp))_plw)T'(f | plus(w,a(f) (15)
peD w

= Per(Cy, 1ls) (16)

Finally, we provides a sufficient and necessary condition for a forecasting strategy to
pass the calibration test for any stochastic process p.

Lemma 11 A forecasting strategy o passes the calibration test if and only if

. INz[f] Lict Up=psi=f)
timsup )" SLLANf =Y pr(fp)l =0 s where, pr(f,p) = =S (17)
T—eo FoF e Yi=1 L{f=f)

The term pr(f,p) can be interpreted as relative weight on conditional p given fore-
cast f. In the long run, combining all conditionals p with their respective weights
pr(f,p) equals forecast f. This resembles the definition of a garbling (mean-preserving
contraction). But even though equation (17) holds for any stochastic process, the dis-
tributions Cy and F,w might not be well defined. Due to this, it becomes intractable to
characterize the set of feasible outcomes for a calibrated forecasting strategy.

3.3 Uninformed Expert

In this section, we consider an uninformed expert who does not know the data-generating
process. Foster and Vohra [1998] show that an uninformed expert can come up with a
calibrated strategy for any stochastic process. We ask: what is the maximum payoff that
the expert can guarantee? How does this utility compare with that of an informed ex-
pert? First, we tackle the situation where nature acts as an adversary. Then, we analyze
the situation when the play of nature is stationary and ergodic but still unknown to the
sender.

The sender, who interacts with nature, has the objective of maximizing her long
run average payoff while passing the calibration test. As is standard in the literature,
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we first model nature as an adversary trying to prevent the sender from doing so. The
receiver’s behavioural assumption constrains the sender’s ability to persuade. Formally,
it implies that the sender has to pass the (asymptotic) calibration test. Given the sender
passes the calibration test, the receiver plays according to her forecast almost surely.

At every period t, the sender and nature simultaneously choose f; € F and w; € Q
respectively. A strategy t for nature is a mapping from the set of all possible past
histories to the set of mixed states, i.e, T: [ J;so(F x Q)1 — AQ.

Let wr € AQ) denote the empirical distribution of states by time T,

T

1

wT:T;% (18)
1=

If the sender knew the empirical distribution wr will equal to p € AQ in advance,
she could repeatedly send the fixed forecast p and pass the calibration test. In particular,
the sender would be able to achieve iig(p).

In the online learning literature (see Mannor et al. [2009]), this is referred as the
reward-in-hindsight function: the highest reward (or payoff) the sender could have achieved,
while satisfying the constraints, had she known natures choices in advance. 8Our char-
acterization of what a sender can attain will be as a function of the empirical distribu-
tion of states wr € AQ.

Definition 12 A function a: AQ — R is attainable by the sender if there exists a forecasting
strategy o such that for every strategy T of nature:

T
1. liminfr_ (w —a(wr)) >0 a.s

2. limsupy_o, ¥ per D @r[f]1- fl < 0. as

where the almost sure convergence is with respect to the probability measures induced by
the strategies o and T.

The first condition states that the long-run average payoff is higher than the function
a(p) almost surely, where p is the limit empirical distribution of states. While the second
condition states that the forecasting strategy passes the calibration test.

In the next theorem, we show that it possible to attain the closed convex hull of the
reward-in-hindsight function. Denote by Co(f) the closed convex hull’of function f.
We have Co iig(p) < i1g(p) for all p € AQ. Furthermore, the function Co 1ig(p) is continu-
ous on AQ). In contrast to the concave envelope, which corresponds to the best garbling

8Mannor et al. [2009] show that the reward-in-hindsight function is not attainable in general. However,
using approachability for closed and convex sets, they show that the closed convex hull of the reward-
in-hindsight function is attainable.
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of a perfectly informed sender, the closed convex hull corresponds to the sender’s worst
garbling in the persuasion problem. We show it is the highest function that an unin-
formed sender can attain.

Theorem 13 For an uninformed sender, Co 1ig(p) is the highest attainable function, where
p € AQ is the empirical distribution of states.

Sketch of Proof. =~ We use the techniques of approachability to prove the theorem.
First, we show the function Co #g(p) is attainable and then show it is the highest at-
tainable function. At every period, the actions of the sender and nature result not only
in sender’s payoff but also a calibration cost. Given forecast f € F and state w € Q) the
calibration cost is given by:

c(f, @) = (0, f = 84pyrnnr 0) € R®IC (19)

It is a vector of infinite elements of size R2l with one non-zero element (at the
position for f) while the rest are equal to 0 € R%l. The calibration condition (2) can
be rewritten as follows: the average of the sequence of vector-valued calibration costs
c(f;, wy) converges to the set E almost surely, where

E={xeR:) Jxll<0) (20)
feF

Thus, the goal of the sender it to maximize the average payoff , such that the aver-

T
age calibration cost converge to E pathwise, i.e., limsup,_, dist(M,E) — 0 a.s.

where, dist(.) is the Euclidean distance. The crux of the proof is to combine the sender’s
payoff and calibration cost to form a vector-valued payoff. Then, we use the dual con-
dition of approachability to show the closed and convex function Co 7ig(p) is attainable.
The idea of the proof is rather straightforward, but the proof is rather technical. We
first prove the result for e—calibration and then use the "doubling trick" (see Mannor
and Stoltz [2010]) for calibration. Convergence rate results follow from approachability
theory and are used to determine the sequence of error margins {er}7_; (see appendix
for the complete proof).

To show it is also the highest attainable function, we construct a strategy for nature
that prevents the sender from attaining any function higher than Co 1g(p)) without
failing the calibration test.

Let o; and p; denote the weight and support of the closed convex hull, i.e., Co #ig(p) =
Z;(:1 ajiis(p;)). Nature plays in a sequence of k blocks, where the relative size of each

9Given a function f : X > R, over a convex domain X, its closed convex hull is the function whose
epigraph is Co({(x, 1)) : r > f(x)}) where, Co(X) is the closed convex hull of set X.
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block I is a;. In block I, nature plays the fixed action p; € AQ). Given any i.i.d process
with distribution p;, the only calibrated strategy for sender is to repeatedly forecast g;
almost surely. The crucial step in the proof is to show that the sender also needs to pass
the calibration test within each block to pass the overall calibration criterion. If not,
then nature can use a punishment strategy that ensures that the sender fails the overall
calibration test. m

So far, we have considered nature as an adversary preventing the uninformed sender
from passing the calibration test. We assume nature can condition her actions based on
the sender’s previous forecasts. Can an uninformed sender do better when nature is
non-adversarial and states are drawn according to a fixed process? We show that this
indeed possible. If the stochastic process is stationary and ergodic, the sender is able
to (approximately) attain the reward-in-hindsight function #g(p). This allows us to
compare the attainable payoffs of an informed and uninformed sender.

For this result, we assume the set of forecasts F is finite. Fix € > 0, we assume the set
of feasible forecasts F forms a regular e-grid:

F:{anéweAQ|nw€{0,%,...,1}and an:n (21)

we) we)

where, L = |'—“|(2)l_1'| € IN. 19 This ensures (generically) for any p € AQ there exists a
unique pure forecast f € F such that ||f =) .o p(w)d,ll < €. Let us denote by f*(p) as
the pure forecast that belongs to the e-neighbourhood of p € A(Q).

Lemma 14 For a stationary ergodic process, the function iis(f*(p)) is attainable, where p €
AQ) is the empirical distribution of states.

Sketch of Proof. The proof uses the concept of opportunistic approachability (see Bern-
stein et al. [2014]). A set that is not approachable in general can be approached if nature
plays favourably or in a non-adversarial manner. Nature can no longer use a punish-
ment strategy that forces the sender to fail the calibration test on deviation. Given the
process is stationary and ergodic, any play is empirically restricted to a neighbourhood
around p. The sender comes up with a forecasting strategy that learns the (limit) em-
pirical distribution and thus attains the function #s(f*(p)).

Note, the sender does not need to know the (limit) empirical distribution p, nor that
the process is stationary and ergodic beforehand to implement the forecasting strate-
gies. If nature’s strategy turns out to be favourable the sender attains the favourable
payoff, if not she still attains the lower benchmark of the general setting. '! To summa-
rize, an uninformed sender can attain Co tig(p) in general and approximately is(p) if
the process is stationary and ergodic, where p is the empirical distribution of states.

10where [x] denotes the smallest integer greater than or equal to x.
Bernstein et al. [2014] show this property holds even in general settings.
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3.4 Application: Financial App

In this section, we consider a financial app (sender) that provides forecasts about a
binary state to a receiver over time. The receiver can also sequentially acquire signals
on the app by paying a cost (see Wald [1945]). Our focus is on the app’s utility and
what it can attain. We solve the app’s forecasting problem subject to the calibration
constraint and show the app’s optimal strategy is to provide accurate but less precise
forecasts as compared to honest reporting.

Each day, a receiver has to decide whether to invest in the financial market or not.
The market can be in two states: (2 = {H, L}. The receiver only wants to invest if the state
is H. The state changes through time and follows a Markov chain with the transition
matrix: T(H |H)=T(L|L)=0.95.

The timing and structure of the forecasting and the information acquisition is as
follows. At the start of each day n € IN, the app (sender) forecasts the state of that day
fn € AQ. Let f,, simply denote IP(w,, = H) € [0,1]. The receiver checks for the credibility
of the app using the calibration test. If the app fails the test, he does not use the app.
Else, he uses the app’s forecast as his prior belief p,, € AQ for the information acquisition
process.

The receiver sequentially acquires signals until he is certain that the state is either
H or L. The receiver continuously observes a process (Z;),,. The change of the process
Z is the sum of the state plus a noise term which is the increment of a Brownian motion

(Wt)iso-

The receiver pays a constant cost ¢y to the app for every instant he observes the
signal. The cost can be interpreted as the time spent on the app. The amount of signal
a receiver acquires corresponds to his action. Morris and Strack [2019] characterize
the total cost for sequentially acquiring signals. They show that the ex-ante cost of
information is equal to the expected change in the prior and posterior log-likelihood
ratio.

C(G) = CongolL(q)dG(q)—L(p) if B(G)=p
*° else

where, L(q) = qlog(llfq) +(1- q)log(%) corresponds to the log-likelihood ratio for
belief g. Also, let p and G denotes the prior belief and the posterior distribution respec-
tively.

Let us denote by e; and ey (0 < ¢; < ey < 1) the threshold beliefs for state L and
H respectively. The receiver acquires signals till his belief crosses either threshold.
Let G, denote the probability distribution with support ¢, = 0.05 and ey = 0.95 and
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barycenter p (whenever feasible). Starting with prior belief p, the app’s utility from
signal acquisition (see Figure 1) is given by :

si (:(G*) e[SpSeH
sig _ p

0 =

s (P) {0 otherwise

The app also gains utility from announcing precise forecasts, which is interpreted
as reputation. The utility gain is higher when the forecast is more precise. The app’s
utility gain in reputation from announcing forecast p (see Figure 2) is given by:

Lrep

fig" (p) =x(p—0.5)° (23)

for some constant « > 0. The app’s total utility iis(p) is the sum of these two compo-
nents:

is(p) = 135 (p) + 157 (p) (24)

The receiver always prefers accurate and precise forecasts to take the optimal action
and minimize the information acquisition cost. But the app’s preference is non-trivial.
On the one hand, revealing precise information increases the app’s reputation. While
on the other, a precise forecast reduces the amount of signals the receiver acquires on
the app. On average, the receiver spends lesser time on the app. The app’s goal is to
find the optimal forecasting strategy that maximizes its long run average payoff subject
to passing the calibration test.

- Il Il Il Il
0.6 0.8 1 3[) 0.2 0.4 0.6 0.8 1
p p

‘ ‘ ‘ ‘
0.2 0.4 0.6 08 1 9 0.2 04
P

Figure 1: ﬁ;lg(p) Figure 2: ﬁgeP(p) Figure 3: 1i5(p)

Using Theorem 9, we know the optimal calibrated strategy corresponds to the solu-
tion to the persuasion problem (C,, iis). Given Supp(C,) = {0.05,0.95} is affinely inde-
pendent, we can use Proposition 2 to find the optimal garbled measure and the optimal
forecasting strategy (see Figure 3, where C =[0.05,0.95] and B(C,,) = 0.5). The solution
is given by:
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Per(C,, 115) = Cav ﬁ5|[ (0.5) (25)

0.05,0.95

The measure C, and the optimal garbled measure Q" are given by:

AL ) 11
i A ek b
p 100 100 9 100 100

The optimal (stationary) forecasting strategy o,, for all n, is given by:

8
U*(fn =15% | Pn = 5(70) = § (L(fn =85% | Pn = 50/0) = (26)

\O| o \O| —

o.(fy=15%|p, =95%) = % o.(fy =85%|p, =95%) = (27)

If the app was perfectly informed and knew the state w € {H, L}, it would want to
reveal it honestly at the start of each day. This corresponds to the standard Bayesian
persuasion solution (Kamenica and Gentzkow [2011]), i.e., the concave envelope of the
utility function (with no restriction on the domain). Even though the receiver spends
no time on the app, the utility from reputation is unmatched. But given the distribu-
tion C w the sender cannot announce the true states without failing the calibration test.
Thus, for a partially informed app (p,, = {5%, 95%}), the optimal strategy is to announce
accurate but garbled forecasts (f,, = {15%, 85%}).

5 I

—  as(p)
— Cav is|(p)
4.5 --- honest
‘ Cous(p) |
& 4|
3.5"-/_____ ____________/____-\':
3 | | | |
0 0.2 0.4 0.6 0.8 1

Figure 4: Financial App

Our main results are represented in Figure 4. What could the app achieve if it was
uninformed? The app would be able to attain the indirect utility function g (p) (blue
line). This corresponds to the no information signaling policy of the persuasion prob-
lem.
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What could the app guarantee if the stochastic process was not stationary and er-
godic? For a general process, an informed app could always pass the calibration test
by reporting honestly (black line). On the other hand, an uninformed app would be
able to approximately attain the closed convex hull of the utility function, i.e., Co ilg(p)
(green line). This corresponds to the worst garbling of a perfectly informed sender in
the persuasion problem. The difference between these two functions gives us the value
of information. It quantifies what an uninformed sender is willing to pay to become
informed.

4 Forecasting against regret minimizers

In this section, we consider receivers who use regret minimization as a heuristic for
decision-making instead of the calibration test. Apart from that, the setting remains
the same as in Section 2. At each period, the sender sends a forecast and the receiver
uses a regret minimizing strategy to take actions. Regret is used as an exogenous cri-
terion to evaluate a strategy in non-Bayesian environments. It measures whether a se-
quence of predictions is accurate or not. The goal of the sender is to maximize her
long-run average payoff. Given the close connection between regret and calibration (see
Perchet [2014]), we compare what the sender can guarantee in each case. We show that
the sender can always guarantee the persuasion benchmark as in the case of the cali-
bration test. We show that, in some cases, the sender can guarantee much more when
the receiver uses a mean-based learning algorithm, a natural class of regret minimizing
strategies.

A key distinction when playing against a no-regret learner is that the forecast f
is no longer a probabilistic statement but simply a message. It acts as context for the
regret minimizer. Given our goal is to compare the analysis with the calibration test, we
assume the receiver minimizes his regret with respect to each forecast f. The receiver
has no regret with respect to forecast f if on the set of stages when the forecast was
f he cannot shift to a fixed action a* € A repeatedly and achieve a higher payoff. This
is a special case of contextual regret, where the forecast acts as context or additional
information the receiver has in each sequential game (the receiver takes action after the
sender has sent her forecast). Let us denote by uy r[f] the average receiver’s payoff upto
stage T when the forecast was f, i.e.,

_  Lieng[f] Ur(@y, @)
uR,T[f] - |INT[f]| . (28)

Definition 15 The receiver has no regret with respect to forecast f if

lim sup

T—oo

RN o ug@rlf)a) - ralf1) <o (29)
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The following proposition provides a justification for using the calibration test as a
heuristic.

Proposition 3 The receiver has no regret with respect to any forecast if he follows the recom-
mendations of a calibrated forecasting strategy.

Proof. Fix any calibrated strategy and assume the receiver plays according to the fore-
cast a; = d(f;) almost surely. The receiver’s regret with respect to the forecast f is given
by:

—tim sup I (ma @11 )0) - (@ 1.t ) (30)
:hIZIFl—ilop mT—YV“(?EelA);C;)f(w)[uR(w, a’)— uR(a),ci(f))]) <0 (using calibration) (31)

For a stationary ergodic process, the optimal persuasion payoff is the sender’s upper
bound when she has to pass the calibration test. We show that she can also guarantee
this benchmark when facing a regret minimizer.

Proposition 4 For a stationary ergodic process p, the sender can guarantee Per(C,, lg) against
a regret minimizer.

For any Q € G(C,), the sender can repeatedly use the signaling policy o(f | p) that
implements Q in the persuasion problem. Given any forecast f, if the receiver uses any
action a € 4(f) on non-negligible fraction of rounds then he has positive regret.

We now show there are examples where the sender can guarantee much more. We
follow the approach used by Deng et al. [2019] and Braverman et al. [2018] by focusing
on the natural class of mean-based learning algorithms. This class of no-regret strategies
includes Multiplicative Weights algorithm, the Follow-the-Perturbed-Leader algorithm,
and the EXP3 algorithm. Intuitively, mean-based strategies play the action that histori-
cally performs the best. For the next result, we assume the receiver uses a mean-based
learning algorithm for a T—period game, where T >> 0.

Definition 16 Let 0,; = Zé:] ug(ws,a) be the cumulative reward for action a for the first
t rounds. An algorithm is mean-based if whenever o,; < op; — yT for some b € A, the
probability to play action a on round t is at most y. An algorithm is mean-based if it is
y-mean-based for some y = o(1).

The next theorem provides an instance where a sender can attain a payoff greater
than the optimal persuasion payoff against a mean-based learner.
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Theorem 17 There exists a game where the sender can guarantee V > Per(C,, ils) against a
mean-based learner.

Proof. Consider the following payoff matrix, which represents ug(w,a) and ug(w,a)
respectively.

a a as ay
wi | (2,8)1(0,7) | (4,3) | (2,0)
wy | (2,0) | (43) | (0,7) | (2,8)

The receiver’s optimal action depends on the distribution of states (let p = P(w,)).
It is optimal to play a; when p < 0.25, to play a, when 0.25 < p < 0.5, to play a3 when
0.5 <p <0.75 and to play a4 otherwise (see Figure 5). This induces the indirect utility
1ig and 1l (see Figure 5 and 6).

...... uY
4 ’u,%{*
,“’5;5
® o | “A'Si
3 —_ us
x )
S =]
4t 2
21 1
0+ : : : = 0
0 02 05 075 1 0 02 05 075 1
p P
Figure 5: Receiver’s indirect utility: g Figure 6: Sender’s indirect utility: g

Consider a Markov chain with transition matrix T(w; | w;) = T(w;, | w;) = 0.8. Thus,
the distribution of conditionals C, has equal weights on the support 20% and 80%.
The optimal garbled measure Q* € G(C,) is to either report honestly or babble, which
implies Per(C,,1ls) = 2 (see Figure 6). We now describe a strategy that will guarantee
the sender a utility V > 2.

Notice, given the receiver uses mean-based strategy with respect to forecast f, we
have

oly = lur(@[f],a)] x 1. (32)

As the receiver is a mean-based learner, he (with a high probability) plays the best
response to the current distribution of states w;[f] at stage t.

The strategy comprises of two forecasts (or messages) I and h. For the first % stages,
the sender announces | when p; = 20% and announces h when p; = 80%. Based on the
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mean-based algorithm, the receiver responds by playing action 4; and a4 (with a high
probability) on forecasts [ and h respectively. As T >> 0, the sender’s average payoff ~ 2
in the first % stages.

Now, for the remaining %, the sender switches the forecast, i.e., she announces |/
when p; = 80% and announces h when p; = 20%. This forces the empirical distribution
wy[1] starting from 20% to increase till it finally reaches 50%. But as soon as the empir-
ical distribution crosses 25%, action a, has the highest cumulative reward and so the
receiver switches to playing action a, (with a high probability). Similarly for forecast A,
as the empirical distribution decreases from 75%, the receiver starts playing action as.

This guarantees an average payoff ~ % in the last % rounds. This is because, for most

of the % stages, the receiver plays action a, while the true distribution of states under /
is 80% . The receiver takes an action that is sub-optimal with respect to the distribution
of states and so the average payoff does not lie on the graph of indirect utilities #ig and
1ig (see Figure 6). Overall, across the T period the sender is able to guarantee an average
payoff V = % > 2. Thus, we have shown that against a mean-based regret learner, the
sender is able to guarantee a utility higher than the solution to the persuasion problem.
n

This example holds even in the case when the receiver does not observe the state
{wi}ien and/or only observes the reward from the action he chose. Using standard tools
from bandits problem, such as inverse propensity score estimator, it is possible to build
unbiased estimator of the reward of unplayed actions [Bubeck and Cesa-Bianchi, 2012].
The main idea consists in slightly perturbing the decision, say by playing with some
small probability at random. This perturbation can actually be quite small, with prob-
ability of order T3 and even T~1/2, so that the actual cost of estimation is negligible
as T increases. Those techniques are now rather standard and very well documented
[Lattimore and Szepesvari, 2020].

5 Conclusion and Future Work

We studied a dynamic forecasting game, where the sender maximizes her utility given
she has to pass the calibration test. For the class of stationary and ergodic processes, we
determined the optimal calibrated forecasting strategy. We did this by reducing the dy-
namic forecasting game in terms of a static persuasion problem. In essence, we showed
that the dynamic interaction of a sender and a receiver performing the calibration test
substitutes for ex-ante commitment in persuasion models. We compared what an in-
formed and uninformed expert can attain. We also compared regret minimization and
the calibration test as heuristics.

Many problems remain open for the setting that we study. In particular, the optimal
calibrated strategy for any stochastic process. Given this problem might be intractable,
we could investigate, for what class of stochastic processes, we can (or cannot) find a
calibrated strategy that does better than honest reporting. Also, the complete charac-
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terization for attainable payoffs against no-regret learners remains open.

There are natural extensions of the model: we can consider other statistical tests to
verify the credibility of the sender. This raises the question of finding tests under which
honest reporting is optimal or that minimize the extent of strategic misreporting.
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A  Omitted Proofs

A.1 Proof of Proposition 1

Fix ¢ > ¢, where ¢ = max [E,[ug(w,a) - ug(w,d(p))]. Let us assume the optimal fore-
peAQ),acA

casting strategy is not calibrated. This implies that there exists an € > 0 and a possible
play such that for infinitely many rounds T, we have

Y B G (1> e 33)

feF

This implies that the sender pays the punishment cost ¢ in infinitely many rounds.
Thus, her long run average payoff equals —c. Recall, d(p) is the receiver’s optimal action
given his belief over state is p. The punishment cost ¢ > ¢ ensures that for any condi-
tional over states p € AQ), the sender prefers to report honestly and pass the calibration
test than pay the punishment cost c.

We now show, in Proposition 5, that there exists a sequence of desirable error mar-
gins {e7}T_; such that a honest sender only pays the punishment cost c in finitely many
rounds.

Proposition 5 There exists a sequence of error margins {ep}7_, such that limp_, er =0
and an honest sender only fails the ep-calibration test finitely many times almost surely.

Proof.
Let

T
_f 1 =f 1 3
xT:Tt dT:TZhﬂ:f}[bwt—f]

If ZfeF ||§J;|| > e, then the sender fails the calibration test in round T. Let’s consider
an honest sender who forecasts the true conditional distribution of states, i.e., f; = p; for

all t. Then, H]; is a martingale difference sequence adapted to the process u. We have
IE[EJ;] = 0 and that ||EJ;|| <1 a.s.. Using Lemma 2 of Foster et al. [2011], we have

T€2
P([x}]| > e7) < 2e 7%

for some constant ¢ > 0.

The Borel-Cantelli lemma states that if the sum of the probability of events, in

our case when the sender fails the calibration test (}_(cr ||§J;|| > e7), is finite then the
probability that infinitely many of them occur is zero. Given the realized forecasts
exactly match with the finite set of conditionals D, we put a bound on the event E; =
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~Te2
(P(maxsep) )]l > e7). So, we have Y, P(Er) = ¥, P(maxgep 71| > er) < L& e % .

Choosing e = o(T‘%) suffices to complete the proof. m

Thus, assuming the error margins satisfy the property, the sender can always avoid
the punishment cost c and improve her payoff by honest forecasting.

A.2 Proof of Proposition 2

The proof relies on the simple characterization of G(P), when Supp(P) is affinely inde-
pendent. A probability measure is a simple mean-preserving contraction if and only if
the barycenter remains fixed B(P) = B(Q) and q € Co(Supp(P))Vq € Supp(Q). This feasi-
bility condition only holds when the support is affinely independent. Using Proposition
6, the solution to the persuasion problem is given by the concave envelope restricted to
Co(Supp(P)). The feasibility condition for measure Q simply boils down to Bayes plau-
sibility in the restricted domain.

Proposition 6 Suppose Supp(P) is affinely independent, then
Qe G(P) & Supp(Q)c Co(Supp(P)) and B(P) = B(Q) (34)

Proof. (<) Choose a (finite) probability measure Q such that Supp(Q) c Co(Supp(P))
and B(P) = B(Q). For all g € Supp(Q), we can write g as a convex combination of

Supp(P).

Zal]pl such that a;j > 0, Za” =1 Vie{l,..nhjel{l,.,m (35)
i=1

Zl"jqj ZZV}az]pz (36)
j=1

j=1 i=1

Under our assumption, we have B(P) = B(Q), i.e.,

n m
Z/\ipi = Zﬂjqj (37)
i1 =T

Combining this with the above equation we get

i(/\i - iﬂjaij)pi =0 (38)
i1

i=1
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As Supp(P) is affinely independent, we have

m
:>/\i = Zy]a,] ViE{l,..,TZ} (39)
j=1
Let G ”] ” G is a row-stochastic matrix. We show that this satisfies definition

(?2)

n n
ZAiGij = Zﬂjai]’ (40)

io1 in1
=} (41)

Similarly, we have

n n
Z/\iPiGij = Z#jpiaij (42)

i=1 i=1
= jq; (43)

(=) Given each g; is constructed by merging weights of Supp(P), it is necessary that
qgj € Co(Supp(P)). We only need to show that B(P) = B(Q). Assume Q € G(P), so we
know that there exists a row-stochastic matrix G such that:

Hidj = Z&pz i Vi€l m) (44)
=1

Zﬂ]q] ZZM& i (45)
j=1i=

- ZAipi = B(P) (46)
i=1

A.3 Proof of Lemma 1l

First, we show that if the forecasting strategy is calibrated, the equation (17) holds. We
have
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Ry -y prr (sl 47)

peD
T
INT[f]I Zthl ]‘{ft:f}éwt Yiz1 ZPGD 1{ft:f,pt=p}[5wt -p]
<L - == I+1 . || (48)
izt Lif=f)

Both the terms converge to zero as T — oco. The first vanishes from the property of
calibration. For the second term, we apply Azuma-Hoeffding inequality. Denote

ZpED Z?:l 1{ft:t,pt:p}[6wt - P]”
T

We have E[x7]| = 0 and that ||x; —X;|| < 1. Using the Azuma-Hoeffding inequality, we

X7 =l

have P(|[x7|[ > n) < exp‘ZTﬂz. Choosing 1 = 0(T‘1§) suffices in our case.

For the converse, we can use the same procedure. We apply the triangle inequality
to show that the if equation (17) holds, then the forecasting strategy is calibrated.

INFIFN . Ziet Lm0,
If - I (49)
T Y1 L)
N ZT: Z 1 t:tl = [6(Ut_ ]
s%ﬂf—;pw(ﬂp)nﬂl 1T Yetpep e TP (50)

The first term goes to zero from assumption and the second terms goes to zero from
Azuma-Hoeffding inequality.

A4 Lemmal8

Lemma 18 For a stationary ergodic process p, the distribution of conditionals C, exists and
is constant p-a.s.

Proof. Consider the two-sided extension of the stationary process i.e., u € AQZ. Let
Wl =(way .y wpy_y) Where a <b—1.

fu = mlwo=-1wl) (51)
foo = Hlwo =+ | 0ly) (52)

Using the martingale convergence theorem we have that, y-a.s., f,, = fo. Given pu is
stationary, using the shift transformation T, we have
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anTn:M(wn:'lwg):pn (53)
Since f,, and p,, = f,, o T" have the same distribution for all n € IN*, we can conclude

that p, = Peo = e = - | @) p-a.s. and E[p(wg = - | 0°y,)] = E[i(we = - | @f)]. Now,
given y is stationary and ergodic, we apply the Maker’s Ergodic theorem to get:

Nooco N

1 N-1
lim — Zy(wn = ol) = Elp(we = | 0)]  p-as. (54)
n=0

In particular, this implies for any p € P

= lim — Zl (o= [1ip=p)] p-as. (55)

N—ooo N

For reference, the Maker’s Ergodic Theorem Kallenberg [2002]:

Theorem 19 (Maker’s Ergodic Theorem) Let p € Al be a stationary distribution and let
for fi,-. : T = R be such that sup,|f,| € Ly(p) and f, — foo p-a.s. Then

lzm—anoT”alE[foJI] p-a.s. (56)

Nooo N

A.5 Proof of Lemma 10

First, we show that for a calibrated strategy o, there will exist a distribution of forecasts
F, o such that F, ; € G(C,). Consider

ZT: 1 = ZT
Y= {ﬁ f) _ZPC;A(P) -1 ftfpt 2N (57)
feF Zt 1
yTI yT YL Culp)T
<Y Uy Z SRS ||+ZZp ey P
feF feF p 2i=1 Lip,=p)
(58)

From Lemma 11, we have that the first term goes to zero as T — oo. The second term
also goes to zero using the definition of the distribution of conditionals C,,. Thus, we
have
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T
1 Lyr_r, _
limsup > ||Zt ! ﬁ > Zt_lT {ft_f’pt_p}H:O (59)

T—oo feF p Yi=11(p,=p)

For any n, let F,[f] = Lzt ft =/} We have F, € G(C,) as the row stochastic matrix

G,(f,p)= thl‘f# satlsfles the condition for a simple mean-preserving contraction.
t=1 *{pt=p}

As A(AQ) is compact, we know there exists a subsequence 1y, 11,,.... such that converges
to a limit point F, i.e.,F = lim,_,, F,,,. Thus, from definition 6, F is a mean-preserving
contraction of C,.

On the other hand, let F € G(Cy). Given Lemma 18, the sender knows the distri-
bution of conditionals C,,. Let 7: P — AF be the signaling policy that given prior C,
results in the distribution F = (u,q). Consider the stationary forecasting strategy given
by o:(f; = f | p: = p) = ©(f | p) for all t. We show the forecasting strategy o is calibrated.
For any f € Supp(Q), we have

T
INTIf Il Lt=1 Lifi=F1O0,
=5 - (60)
Li=1 Lif=)
Yo Xt Wi fpeepi[0w —P]  Yper Limt Lifi=fpi=p) (P — f
I+l
T T
Yo Yimt Vgt pi=pi [0, Y. Y L=yt (f 1 P)p = f]]
+|| |
T T
Again, using the Azuma-Hoeffding inequality, the first term vanishes to zero. For
the second term, we know that C,, is well defined and so the overall term converges to
zero from the definition of mean-preserving contraction. Hence, we have proved that
for a stationary ergodic process, the sender can implement any F € G(C,).

<

(61)

< (62)

A.6 Proof of Theorem 13

We first show that the function Co #g(f*(p)) is attainable. Then, we show that is the
highest continuous attainable function.

(a) The main idea of the proof is to combine the payoff and calibration cost function
such that the overall set is a closed and convex set (a similar proof can be found in Man-
nor et al. [2009]). Then, we use the dual condition to show that the set is approachable.

First, we provide the proof for the case of e—calibration. We then use that strategy
to construct a calibrated sender by using the "doubling trick". The idea is to partition
the play into blocks of exponentially increasing sizes.

Let’s assume the set of forecasts F is finite. Given € > 0, we assume the set of feasible
forecasts F is given by the regular e-grid F.:
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FG:{anéweAQInwe{O,Z,...,l}and anzl} (63)
we) we()

where, L = [Y5-— Q' 1€ IN. 2 This ensures (generically) for any p € AQ there exists a
unique pure forecast f € Fsuch that [|[f — ) ,cop(w)d,l|l < €. Let us denote by f*(p) as
the pure forecast that belongs to the e-neighbourhood of p € A(Q)).

Given forecast f € F and state w € Q the calibration cost ¢ is given by:

of,w v f =B prny 0) € RIFEIQ (64)

It is a vector of infinite elements of size R with one non-zero element (at the
position for f) while the rest are equal to 0 € R2l. The e-calibration condition (2) can
be rewritten as follows: the average of the sequence of vector-valued calibration costs
¢; = c(f;, w;) converges to the set E. almost surely, where

Ee={xe R Y x| <e)

feF

For each stage t, the sender and nature simultaneously choose f; € F and w; € Q)
respectively. This results in a reward r; = iig(f;) and penalty ¢; = c(f;, w;) for the sender
in stage t.

Unlike the (exact) calibration test, the forecast and the limit empirical distribution
of states do not have to exactly match but can differ up to an error margin e. This
is because we assume the set of feasible forecasts F is a finite grid. Even an informed
sender who sends reports honestly can fail the exact calibration test if she was restricted
to send forecasts from the finite set F.

We now show the function Co #ig(f*(p)) is attainable. We show this using the dual
condition of approachability. For any time period t, consider the vector-valued payoff
m(f,w) constructed using the sender’s payoff and the calibration cost:

m(fy, w;) = (1, ¢, 00,) € D C Rx R x A(B) (65)

Now, consider the sets:

Dy =((rc,p)eD:r>Cois(f'(p)} Dy=l(r,c,p)eD:cek (66)

2where [x] denotes the smallest integer greater than or equal to x.
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and let D* = D; N D,. The set D is closed and convex. To show the average of
the sequence of the vector m; approaches D*, we need to verify the dual condition of
approachability, i.e., for any p € A(QQ)dpu € A(F) such that m(p, p) € D*. We have

=()_wis(f), ) mfIp@)e(f,w),p) € D" (67)
w,f w,f

By definition f*(p) satisfies Condition (67) and the set D* is approachable. The set
D, ensures that the sender can attain Co iig(f*(p)) while the set D, ensures that the
e-calibration condition is met.

Moreover, approachability theory provides convergence rates of vector payoff and
the calibration condition (see Perchet [2014] ). For every strategy of Nature and for
every 0 > 0, with probability at least 1 — 0, we have

Z|NTT[f]|”5T[f]_f”S€+ |Q|\/<IQI >1og<§> (68)

feF.

Now, we use the "doubling trick" to show that the sender can pass the exact calibra-
tion test. The main idea is to partition time into blocks of exponentially increasing sizes
(see Mannor and Stoltz [2010]). Blocks are indexed by k = 1,2.., where the size and er-
ror margin of block k is s, and €;. The sender uses the €;-calibrated strategy described
before using forecasts f from the grid F.,. Let br denote the block number when the
time period is T. For any forecast f, using triangle inequality, we have

by T,
j;”;lﬁ ||<];;||;1{ft il (69)

We now substitute the bound obtained in the previous section and get that with
probability 1 — (8,7 +... + 0y, 7) = 1 — =5

T br N
Y0 1o -p< Y Ty Bl g, (70)
feF = =1 k=1 = feF,
LTy 2 [(Q]-1) 3
— 1 -
<k1T[ek+€kQ\/ gy o

Now, we choose €, Ty and 6, r appropriately and use Borel-Cantelli Lemma to ob-
—k
tain the de51red convergence. Let Ty = 2K, e, = 2700FT) and let OkrT = This ensures

that €k and W’TT{

2’<T2
converge to zero while Ty increases exponentially.
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(b) Now, we show that the function Co i#is(p) is the highest continuous attainable
function. We construct Nature’s strategy 7 that prevents the sender from attaining .
Let {p]'};?zl denote the support points corresponding to the closed convex hull of ig, i.e.,

Co 1ig(pg) = Z;‘Zl ajis(pj). From Caratheodorys Theorem we can take k to be equal to
|Qf + 2. Consider a game with T stages where Nature plays in a sequence of k blocks,
where the size of block I is a;T. In block I, Nature plays i.i.d. according to p;.

First, we show that for any i.i.d process with distribution p the any calibrated fore-
casting strategy has to send the truthful forecast p almost surely. In other words, a
sender cannot send a forecast f # p (with positive probability) and pass the calibration
test. From the calibration condition and the law of large numbers, we have

limsup lN?[f]l

T—o0

If-pll>0 VfeF (72)

Now, consider sender’s play in each block /. We claim that for the sender to pass the
overall calibration test, she has to pass the test in each block I and thus can only report
p; almost surely. Assume that is not the case and let / denote the first block where the
sender’s strategy is not calibrated. Then, we have

|anT[f]| —

limsup )~ =21, 1(f]- 11> 0

T—o0 feF

where, n; = Z;zl a;. If this happens, then let nature can play according to ¢, for the
rest of the game, where o, # p; for j = 1,...,]. Even if the sender repeatedly forecasts
0., the calibration cost will be positive. Even if the sender knew the sequence py,..., px
in advance, she could not guarantee a higher payoff without failing the calibration test.
Using this block strategy, nature restricts sender to announce forecast p; in block [.
Thus, under nature’s strategy 7, the sender’s payoff cannot be higher than Co ig(py) =

Y ajis(p) .

A.7 Proof of Lemma 14

We use the notion of opportunistic approachability, which was developed by Bernstein
et al. [2014]. They devise algorithms that in addition to approaching the convex hull
of the reward-in-hindsight, seek to approach strict subsets thereof when the opponents
play turns out to be restricted in an appropriate sense (either statistically or empiri-
cally).

Definition 20 The play of the opponent is empirically Q-restricted with respect to a parti-
tion {t,,}, if there exists a convex subset Q C A(B) such that, for the given sample path
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1

lim — d(@,,,Q)=0 73

b ;rm (@, Q) (73)
where, T, denote the length of block m, ny; = fozl T,, denotes the time at the end of the

block M and w,, denotes the empirical distribution of states in block m.

Bernstein et al. [2014] (see Theorem 5) show that if nature’s play is empirically Q-
restricted with respect to a partition with subexponentialy increasing blocks, then

lim d(#,,R*(Q)) =0 where, R"(Q) = NesoColils(p) : d(p, Q) < €} (74)
n—o00
Here, R*(Q) denotes the closed convex image of the reward-in-hindsight restricted
to the set Q. If Q = A(Q), then we obtain the same bounds as in the case of an adversarial
environment.

Given 1 > 0, let N, (p) denote the y—neighbourhood around p where p is the em-
pirical distribution of states. We show that for a stationary ergodic process the play is
empirically N, (p)-restricted with respect to a partition with finite blocks 7. This results
directly from the ergodic theorem: given any 7 > 0, there exists 7, € IN such that forall
T > 1, we have

[l

l{wt:a)} —P(w)| =1 (75)
t=1

Al —

The empirical distribution p exists and is constant for a stationary ergodic process.

Choosing 7* = max 7, as the block size ensures that nature’s play in each block is empir-
we

ically restricted to N, (p). This implies that the average reward function 7, converges to
R*(N,(p)). Thus, choosing an appropriate 1 > 0 such that f*(q) = f*(p) for all g € N, (p),
the sender can attain the reward-in-hindsight function evaluated at the empirical dis-
tribution p. !> Additionally, Bernstein et al. [2014] show that the results hold without
knowing if nature’s play is empirically restricted nor knowing the restriction set Q.

A.8 Proof of Proposition 4

Fix Q € G(C,) and let 0 : P — AF denote the signaling policy that results in Q. From
Theorem (9), we know that the strategy is calibration and the distribution of forecasts
F/w = Q. In particular, we have

13Note, this is valid as long as f*(p,) € A corresponds to a unique forecast. This condition is met generi-
cally.
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w=w)UR(W, a " 1y rurlw,a
limsuPZ L=t {, rlwar) = f(w)limsup L=t L=pr(@, ;)
T—oo T—oco

(76)

This follows as if lim, a, = a, then limsup, a,b,, = alimsup, b,,. Given the receiver
minimizes regret, we have

Y 1oy lur(wy ) — ug(wy, 4(f))]

li <0 77
Tpoupay T - 77
IE up(wy,a upl(wy, a
2llmsupmaxzt1 gl @)~ ug(wna)] 78)

Tooo @€A T

If the receiver plays actions a; € d(f) on rounds with non-negligible weight, it results
in a positive regret. Hence, if the receiver uses any no-regret learning algorithm, it will
almost surely play the recommended action d(f). Thus, for a stationary ergodic process,
the sender can ensure that she guarantees Eg[is] for any Q € G(C,,).

B Extension: MDP

In this section, we consider an environment where the receiver’s action affects how the
states evolves. We consider the stochastic process y is a Markov Decision Process with
transition matrix T(ws,; | w;, a;). The behavioural assumption of the receiver remains
the same: he uses the calibration test to verify the claims of the sender. He plays ac-
cording to the sender’s forecast a; = d(f;) if she passes the test and punishes her if she
fails. '* While characterizing the set of feasible policies that pass the calibration test,
it suffices to consider policies with memory 1, i.e., policies that maps the past forecast
and state into a possible random forecast o : F x (J — AF. Any such policy induces a
Markov chain over the set F x (), whose transition matrix Q, is given by

Q(f,wlf,0)=T(wlw,f)o(flw,f) (79)

Let us denote by F the set of feasible distributions y € AF, i.e., p corresponds to
the marginal over F of the invariant distribution of the Markov chain induced by a
calibrated reporting policy o : F x (Q — AF.

H4For simplicity, we assume the receiver plays according to the sender’s forecasts and only performs the
calibration test at the end of the game. This is because the punishment action also affects the state
transition and can be difficult to keep track of.
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Proposition 7 The set of feasible distributions F is a convex polytope. It is the marginal of
n € A(F x Q) x F) over F where 1 satisfies:

Y nlf e Tl f) =n(f,o) (80)
a)',f’
n(f @) =n(f)f (@) (81)

Equation (80) states that # is the invariant distribution for some reporting policy.
Equation (81) states that the invariant distribution # is calibrated.
Proof. Given a reporting policy o : F x 2 — AF, we know the (time-averaged) distri-
bution of outcomes (forecasts and states) converges almost surely. For simplicity, we
assume the MDP is unichain. This implies that distribution of outcomes is the unique
invariant distribution 7 of the Markov chain induced by o. !> As 7 is the invariant
distirbution of the induced Markov chain, we have

T 4 ) )
1(f ) = lim == ooe ] (82)
n(f,0)= ) nlf,0)Q(frwlf ) (83)

Also, as we assume the forecasts are calibrated, we have

T
_1 Lyg= wW=w
w ) )= Jim ZEL U

= f(w) (84)
Toeo Y1 1ipop flo

Equivalently, a distribution n € A(F x Q) x F) is feasible and invariant for some re-
porting policy o if

Y nfiwf)=) n(f.0. fiT@lw,f) (85)
f” o f
1(f, @) = n(f)f (@) (86)

where, the policy (with memory 1) to induce the distribution 7 is given by

rl(f,’w,lf) . 4 7
U(flw;f): n(f @) 1f11(f,w)>0

n(f) if n(f,w) =0

15An MDP is unichain if every pure policy gives rise to a Markov chain with at most one recurrent class.
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n
The sender’s maximization problem is given by the following linear program:

max ) pu(f)iis(f) (87)
f

Thus, we can extend our model to situations where the receiver’s action affects the
distribution of future states. Furthermore, we can characterize the set of outcomes that
result from calibrated strategies and solve for the optimal forecasting strategy.

C Persuasion problem in terms of experiments

In this section, we define an equivalent way of describing the persuasion problem in
terms of Blackwell experiments. This is the standard way of modeling the persuasion
problem in the case of a perfectly informed sender(see Kamenica and Gentzkow [2011]).
We extend it to the case, where the sender is imperfectly informed and can only use
experiments less informative than a prior experiment.

Definition 21 An experiment F : (O — AT is a garbling of the experiment E : () — AS if
there exists a row-stochastic matrix (or mapping) G : S — AT such that EG = F.

This defines a partial ordering in the set of Blackwell experiments. We say F < E
when experiment F is a garbling of experiment E. A prior belief p, € AQ and an exper-
iment E : (3 — AS give rise to a probability measure P(pg, E) := (As, ps)ses. Conversely,
given any probability measure Q = (y,q) you can define a prior belief (or barycenter)
B(Q) and an experiment £(Q).

A=) pol@E(s|w) B(Q)=) wid;
weQ) i=1
__ po@EGs| @) Lo i)
p) = 5 ] EQUs @) =5

Lemma 22 shows the equivalence between the simple mean-preserving contraction
of a probability measure (Elton and Hill [1998],Whitmeyer and Whitmeyer [2021]) and
the garbling of an experiment (Blackwell [1953]) with a fixed prior belief.

Lemma 22 A probability measure Q is a mean-preserving contraction of P if and only if
B(P) = B(Q) and the experiment £(Q) is a garbling of E(P).
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Gl lG (88)

Proof. (=) Assume probability measure Q is a mean-preserving contraction of P. First,
we show that the barycenter of the two measures is equal.

BQ)=) pjaj (89)
=1
= ZZ/\iPiGij (90)
=1 =1
= Z/\ipi = B(P) (91)
i1

Now, we show the resulting experiment F is a garbling of E.

Hidj(wn)
Bl o) = s on) 92
il 1 migj(wy) (92)
~ Xim1 Aipilwy)Gjj
L Aipi(w,) (93)
=) _EGsil0nGy (94)
i=1

(<) Assume the Blackwell experiment F is a garbling of E. We show that the result-
ing measure Q is a simple mean-preserving contraction of P.
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Wi = Zpo(wk)P(tj | wy) (95)
k=1

= Zpo(wk)ZE(Si | wi)Gij (96)
k=1 i=1
= Z)\iGl-j (97)
i=1
#iq; = polwi)F(t; | wg) (98)
=polwr) ) _E(sil wp)Gyj (99)
i=1
= Z/\ZPIGZJ (100)
i=1

Thus, solving the persuasion problem (P,1ig) is equivalent to finding the optimal
garbling of the experiment £(P) with prior B(P).

gg()lg)lEQ[u]where Q ="P(B(P),F) (101)

For a perfectly informed sender, there is no constraint on the Blackwell experiment F
as E(P) corresponds to full information. Also, B(P) is simply the common prior belief of
the players. Any distribution Q such that (B(P) = }_; u;q; (Bayes plausibility condition)
can be implemented.

Note the optimization problem (101) is in terms of mean-preserving spreads (split-
tings) while the equivalent problem (8) is in terms of mean-preserving contractions
(garblings).
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